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Environmental impact
assessments for new Arctic
roads do not adequately
consider the long-term
cumulative impacts from
infrastructure and climate
change to permafrost
landscapes.

This is due in part to lack of
long-term historical case-
studies that followed the

consequences of infrastructure
once it was built.




Direct impacts (footprint) of infrastructure:
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Elevated gravel roads

Source of fines
for road dust

Barrier to snow and
cross drainage of
water
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Indirect landscape effects of roads
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Difficult to evaluate complex cumulative indirect impacts adjacent to roads




Or to separate the climate-related impacts from the infrastructure-related impacts
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Pre-Road
Prudhoe Bay region (1970s)
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Four scenarios of

landscape and
vegetation change*

B. C. D.
Climate change, no road Climate change and road dust Climate change, road dust, and flooding
Jorgenson site (1949-present) Colleen site, T1 (1949-present) Colleen site, T2 (1949-present)

Ground-based studies to
examine climate-related and
indirect impacts of roads

transitional polygons high-centered polygons
—
* Impacts to the ice wedges and
protective intermediate layers are in B oo Disturbed Moist Tundra (dusted) Pisaie
separate papers (Jorgenson et al. 2015, B s L e v

KanEVSkiy et al. 2017, 2021 in prep.) . Aquatic Tundra Disturbed Wet Tundra (flooded) . Water . TR




Scenario A. Pre-road (1949-1968)
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Scenarios B, C, D:
Permafrost observatories

e Colleen Site (CS) and Jorgenson Site (JS)

 C(Climate and permafrost temperature
data from Romanovsky Deadhorse
station, Deadhorse Airport, Prudhoe
(ARCO), and Kuparuk NWS data.




Scenario B. Jorgenson site, climate change, no road

Relatively isolated from infrastructure impacts, large changes in thermokarst
ponds since 1968

250 m transect, elevation, snow depth, thaw depth

Progression of thermokarst pond area: 1949 (0.9%),
1988 (1.5%), 2004 (6.3%), 2012 (7.5%)

Jorgenson, M.T. et al., 2015. Role of ground ice dynamics and ecological
feedbacks in recent ice wedge degradation and stabilization. Journal of
Geophysical Research: Earth Surface, 120(11), pp.2280—-2297.




Scenarios C and D. Colleen site, climate change and road
Straddles the Spine Road with different effects on each side
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ransects and plots

Colleen site
e Aerial photo time series * Environmental factors
mapping * \egetation
e Transect & plot surveys * Soil
* Micro-topography * Snow
e Permafrost cores * Dust
* Flooding

* Active layer




Colleen transects for scenarios C and D

Scenario C: Transect T1 (Thermokarst, and heavy road dust)

Scenario D: Transect T2 (thermokarst, dust, and flooding

Most evident impacts:
T1 — dust & thermokarst
T2 — flooding & thermokarst




Data: Transects T1 and T2 and 29 plots

height, patterned-ground
element, vegetation type, LA,
dust-layer thickness

Vegetation plots: Soil and snow properties
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Mapping Colleen site changes
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Differences between T1 (dusted) and T2 (flooded)

Key environmental and vegetation variables, 2014
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Conclusion: Polygon trough-center relief, thaw depths, and productivity are greater on the flooded side of the road.



Comparison of key site factors Jorgenson (Scenario B)
and Colleen transects, 2020 (Scenarios C and D)

Center-trough elevation Thaw depth, Jorgenson Distribution of broad vegetation groups
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Comparison of disturbed
Colleen plots (Walker et al.
2014) with similar

undisturbed plots from 1970s

(Walker 1985)

Cluster analysis: Vegetation-unit

classification

Informa tion Remaining (%)

Synoptic table analysis of species
distributions in veg units

Ordination: Relationship of vegetation
units to environmental gradients
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Scenario A: Pre-roads

e Dominantly low-centered polygons, <30 cm trough-center microrelief, dominated by
wet nonacidic tundra in polygon basins and troughs.

e 1949-1968: Little change to ice-wedge thermokarst, water-bodies, or landforms... and
by inference, to the vegetation.



Scenario B: Climate-change, no road

Deeper thaw depths, degrading More, larger thermokarst ponds, conversion to transitional and high-
ice wedges, trough subsidence centered polygons, with > 50 cmn microrelief, changes to drainage patterns

Plot thaw depth 1977 and 2014
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Scenario C: Climate change + dust

Dust layer Smothered low-growing vegetation near Large reductions in cover and species
added to soils roads, reduced polygon microrelief diversity of small forbs, mosses, lichens
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Dust layers in snowpack near roads, altered snow albedo, early snow

Introduction of halophytic species
melt, earlier green-up, impacts to waterfowl and wildlife

from dust control chemicals
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Scenario D: Climate change + dust + flooding consequences

Extensive flooding, deep troughs, conversion ~ Water bodies interconnected to each
Very large dust impacts near road of L.C. to H.C. polygons other and to Lake Colleen

Lush growth of wet sedge
vegetation on polygon centers and Largest cumulative changes to water bodies, polygon morphology, and

aguatic sedges in troughs vegetation patterns
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Conclusions

e Scenario approach was useful to examine gradients of
cumulative impacts.

e More work is needed to model the complex interactions
of climate change and indirect infrastructure-related
Impacts.

e The results should be helpful for recommendations
regarding future cumulative impact assessments of
indirect impacts and climate change.
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