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Arctic tundra vegetation has been
undergoing substantive changes recently,
at least since the mid 20 century.

These changes have been rather
heterogeneous from a circumpolar
perspective.

What are the patterns of this hetero-
geneity, and is vegetation changing in
a predictive manner?
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arctic tundra biomass and temperature

2) Use a remotely sensed temperature
Index to project tundra biomass
dynamics over the satellite record

& 3) Compare observed vegetation dynamics
(also using remote sensing) to projected

changes
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Heterogeneous Arctic “Greening”

Normalized Difference Vegetation
Index (NDVI)

MaxNDVI | . TI-NDVI
(peak greenness) s e o Vo S T (temporally integrated greenness)
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Change in phytomass
1982-2010
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Aboveground biomass increases since 1982 have been particularly strong in the
mid- to Low-Arctic (20-26%), compared the High Arctic (2-7%).
Epstein et al. (2012)




North America Eurasia
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SWI — summer warmth index (sum of
mean monthly temps > 0°C)
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All sites: y=0.383 Inx + 0.994
R%2=0.94, p<0.001
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North America SWI

Biomass = 2.1644(Year) - 3917
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Difference Between Observed and Predicted Biomass Slopes
Across Subzones
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Detrended, Interannual SWI-Biomass and NDVI-Biomass
Coefficients of Variation
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- disturbances such as fire, landslides, cryoturbation
- dispersal and availability of seed bank for low/tall shrubs
- precipitation dynamics

(D.A. Walker)
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1) Vegetation has increased faster than projected by spatial relationships with temperature in
Subzones D and E (as well as Subzone C for Eurasia), potentially due to interactions with
disturbances, precipitation dynamics, and other factors.

2) Interannual responses to temperature are greatest in Subzones C and D (mid-transect),
potentially due to intermediate levels of vegetation and nutrient constraints, as well as a mix of
High and Low Arctic plant types.
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