

ALASKA GEOBOTANY CENTER DATA REPORT

AGC 22-01

OBSERVATIONS IN ICE-RICH PERMAFROST SYSTEMS, PRUDHOE BAY ALASKA, 2020-21

DONALD A. WALKER, MIKHAIL KANEVSKIY, AMY L. BREEN, ANJA KADE, RONALD P. DAANEN, BENJAMIN M. JONES, DMITRY J. NICOLSKY, HELENA BERGSTEDT, EMILY WATSON-COOK, JANA L. PEIRCE

EDITED BY D. A. WALKER AND J. L. PEIRCE

DECEMBER 2022

INSTITUTE OF ARCTIC BIOLOGY, UNIVERSITY OF ALASKA FAIRBANKS 🛛 👧

OBSERVATIONS IN ICE-RICH PERMAFROST SYSTEMS, PRUDHOE BAY ALASKA, 2020-21

ALASKA GEOBOTANY CENTER DATA REPORT 22-01 :: DECEMBER 2022

Edited by	
DONALD A. WALKER AND JANA L. P	EIRCE

TABLE OF CONTENTS

	Contributorsiii				
	Preface and acknowledgmentsiv				
1	Introduction				
	1.1 The study area				
2	2020 Field Season				
	2.1 Overview				
	2.2 2020 NIRPO site reconnaissance				
	2.3 Field methods and observations				
	2.4 New plots and potential study sites9				
3	2021 Field Season				
	3.1 Overview				
	3.2 Remote sensing				
	3.3 NIRPO transects				
	3.4 NIRPO terrestrial vegetation plots				
	3.5 Aquatic vegetation plots				
	3.6 Trace-gas flux study				
	3.7 Basal peat collection				
	3.8 Permafrost cryostratigraphy boreholes				
	3.9 Permafrost temperature boreholes27				
4	References				
	Appendices (listed on next page)				

LIST OF APPENDICES

DATA TABLES AND PHOTOS

1	Time series of aerial images for Colleen and Airport sites (1949-2015)	31
2	2020 Field data	35
3	2021 Transect data	46
4	2021 NIRPO terrestrial plot data and photos	62
5	2021 Aquatic plot data and photos	94
6	2021 Basal peat sampling	113
7	2021 Permafrost borehole data	114

Funding acknowledgment

The National Science Foundation (NSF) Navigating the New Arctic (NNA) Track1 project Landscape Evolution and Adapting to Change in Ice-rich Permafrost Systems (PI Donald A. Walker, Award 1928237) provided primary support for this work, with additional support from NSF ArcSEES Cumulative Effects of Arctic Oil Development — planning and designing for sustainability (Award 1263854); ARCSS Collaborative Research: Causes and Consequences of Catastrophic Thermokarst Lake Drainage in an Evolving Arctic System (Award 1806213); ANS Collaborative Research: The Transition Zone of Upper Permafrost: The Frontline for Permafrost Changes across Climate and Landscape Gradients (Award 1820883); AON Continuing Support of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost (Award 1832238); and NNA Track 1 Collaborative Research: Resilience and adaptation to the effects of permafrost degradation induced coastal erosion (Award 1927708).

How to cite this volume

Walker, D. A., M. Kanevskiy, A. L. Breen, A. Kade, R. P. Daanen, B. M. Jones, D. J. Nicolsky, H. Bergstedt, E. Watson-Cook, and J. L. Peirce. 2022. Observations in ice-rich permafrost systems, Prudhoe Bay Alaska, 2020-21. AGC Data Report 22-01, Alaska Geobotany Center, Fairbanks, Alaska, USA.

On the cover

Thermokarst landscape with high-centered polygons and flooded troughs in a Natural Ice-Rich Permafrost Observatory (NIRPO) research site in Prudhoe Bay, Alaska. **Inset photos, top:** Benjamin Jones prepares a quadcopter for a remote sensing survey (Photo: M. Kanevskiy); **middle row from left:** Sergei Rybakov and Nicholas Hasson mark locations for installing ground temperature sensors (Photo: D.J. Nicolsky); Anja Kade and Josephine Mahoney make trace gas flux measurements; **bottom from left:** Donald Walker and Amy Breen survey plant species at a terrestrial plot; Emily Watson-Cook samples aquatic vegetation in a thermokarst pond. (Photos: J.L. Peirce except as noted)

CONTRIBUTORS

HELENA BERGSTEDT

b.geos GmbH, Vienna, Austria

AMY L. BREEN International Arctic Research Center, University of Alaska Fairbanks

RONALD P. DAANEN Division of Geological & Geophysical Surveys, Alaska Department of Natural Resources

OLIVIA HOBGOOD

Alaska Geobotany Center, Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks

BENJAMIN M. JONES Institute of Northern Engineering, University of Alaska Fairbanks

ANJA N. KADE Department of Biology and Wildlife, University of Alaska Fairbanks

MIKHAIL KANEVSKIY Institute of Northern Engineering, University of Alaska Fairbanks

DMITRY J. NICOLSKY Geophysical Institute, University of Alaska Fairbanks

JANA L. PEIRCE Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska Fairbanks

DONALD A. WALKER Alaska Geobotany Center, Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks

EMILY WATSON-COOK

Alaska Geobotany Center, Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks

Preface and Acknowledgments

The National Science Foundation's Navigating the New Arctic (NNA) initiative seeks innovations in fundamental convergence research across the social, natural, and engineered environments to inform understanding of Arctic change and its local and global effects. The NNA Track 1 project *Landscape evolution and adapting to change in ice-rich permafrost systems* (NNA-IRPS) is focused on several key questions:

- How are climate change and infrastructure affecting ice-rich permafrost systems (IRPS)?
- What roles do ecosystems play in the development and degradation of IRP?
- How can people and their infrastructure adapt to changes in IRPS?

The Landscape Evolution portion of the project is geographically focused in the Prudhoe Bay Oilfield (PBO), Alaska, and is investigating (1) how differences in vegetation, soils, water, and time influence the accumulation and degradation of ground ice in IRP landscapes, and (2) how the loss of ground ice can radically change these landscapes, their components, and the infrastructure built on them. The Adaptation to Change component is focused in the village of Point Lay, Alaska, which did not have a field campaign in 2020 or 2021 due to the COVID-19 pandemic.

This data report covers research activities during the 2020 and 2021 field seasons at NNA-IRPS field sites in the PBO. The 2020 field season was abbreviated due to COVID-19 restrictions on travel and access to hotel facilities in Deadhorse, Alaska, the service center for the PBO. Field work was conducted from a field camp situated approximately 14 km south of Deadhorse. The primary goals were to (1) conduct a reconnaissance of a new Natural Ice-Rich Permafrost Observatory (NIRPO), (2) monitor late-season thaw depths, water depths, ice-wedge degradation, landscape change, and vegetation distribution along six previously established transects in the PBO, and (3) provide training and field-site overview for a new graduate student and postdoctoral

fellow. Goals, participants, schedule, and observations during the 2020 field season are in this report, including new data from previously established research transects in the PBO and data obtained from a new NIRPO reconnaissance area.

Most of this data report covers the 2021 field season. An overview of the tasks, field team, schedule, and logistics is followed by sections devoted to summaries of (1) remote sensing activities (Daanen and Jones), (2) observations along transects at the NIRPO and other PBO transects (Walker et al.), (3) observations from the NIRPO terrestrial plots (Walker and Breen), (4) thermokarst-pond vegetation and environments (Watson-Cook), (5) trace-gas fluxes (Kade), (6) basal-peat dating (Bergstedt), (7) permafrost borehole temperature stations (Nicolsky and Romanovsky), and (8) studies of permafrost cryostructure (Kanevskiy and Shur). Some preliminary analyses are presented with these summaries. Tables containing several of the datasets are in seven appendices with instructions on where to access the data online in the Arctic Data Center, the primary data and software repository for the Arctic section of the National Science Foundation's Office of Polar Programs.

This project was primarily funded by the National Science Foundation NNA Track 1 award (1928237) and built on a previous award from the NSF ArcSEES program (1263854) with contributions the Bureau of Ocean Energy Management, Bureau of Land Management, and U.S. Geological Survey. The aerial surveys were made with the collaboration of the Alaska Division of Geological and Geophysical Surveys. The research activities of several of members of the expedition were supported in part by other NSF awards to Ben Jones (1806213), Yuri Shur (820883), and Dmitry Nicolsky (1832238, 1927708). Logistic support was provided the Battelle Arctic Research Operations, Fairbanks office, and the Institute of Arctic Biology, University of Alaska Fairbanks.

1 Introduction

1.1 The study area (D.A. Walker)

The Prudhoe Bay Oilfield (Figure 1a) was discovered in 1967 and is now part of the largest industrial complex in the North American Arctic. The region, history, and cumulative impacts of development have been described in several publications (Brown 1975, Walker *et al.* 1980, Walker 1985, Truett and Johnson 2000, National Research Council 2003, Raynolds *et al.* 2014).

Key research sites include three 25-km² areas (A, B, and C, Figure 1a) where geoecological and historical-change maps were made for cumulative impact studies (Walker *et al.* 1987, National Research Council 2003, Raynolds *et al.* 2014). New research for the NNA Ice-Rich Permafrost Systems project has focused at four field sites in the main NNA-IRPS study area (Figure 1b), described here in the order they were established.

1.1.1 Jorgenson site

The Jorgenson site (JS) (Figure 2) was established in 2011 to better understand the processes of ice-wedge degradation and stabilization (Jorgenson *et al.* 2015, Kanevskiy *et al.* 2017). The site is relatively isolated from road-related dust and flooding and provides a historical comparison with the heavily disturbed Colleen and Airport sites. Changes to the vegetation and landforms at the JS are mainly those associated with climate change, but there are also some low-level impacts, including trails from past seismic operations, vegetation impacts from atmospheric emissions from industrial activities, and low levels of road dust from the PBO road network.

Previous observations (2011–2013) at the JS included measurement of ground elevations, thaw depths, water depths, and snow along a 0–250-m

Figure 1. *a.* The eastern portion of the Prudhoe Bay oilfield (PBO) showing study areas of the NNA-IRPS project, including areas of geoecological change mapping (A, B, and C). *b.* Detail of the main NNA-IRPS PBO study area, including the Colleen, NIRPO, Jorgenson and Airport sites. Climate and permafrost borehole temperature data were from the Romanovsky Deadhorse station and the Deadhorse Airport. Ice-wedge degradation studies were conducted at the Erosion and Culvert sites.

Figure 2. The Jorgenson site in 1968 and 2012 illustrating the expansion of thermokarst ponds in 44 years. The 350-m transect (white line) has been the focus of intensive landscape and permafrost studies (Jorgenson et al. 2015, Kanevskiy et al. 2017).

Figure 3. Cross-sectional profile (top) and digital elevation model (bottom) of the first 250 meters of the Jorgenson transect. Plot locations, microtopography, water levels, snow and thaw depth are shown (from Jorgenson et al. 2015).

section of the 350-m JS transect (Figure 3). This section was revisited in 2020 and 2021 for repeat measurements of thaw and water depth, as well as other measurements discussed below.

1.1.2 Colleen Site

The Colleen site (CS) is located along the Spine Road in the eastern portion of the PBO near the north shore of Lake Colleen (Figure 1b). The Spine Road was built in 1969 and is the most heavily traveled road in the oilfield. The modern history of change in ice-wedge polygons and thermokarst at the CS are recorded in nearly annual high-resolution aerial photographs and remote sensing images from 1949–2014 (Appendix 1, Figure A1.1).

In 2014, 200-m transects T1 and T2 were surveyed perpendicular to the northeast and southwest sides of the Spine Road to examine variations in vegetation and environmental factors along gradients of distance from the road (Figure 4).

Vegetation and environmental factors were recorded at pin flags spaced at 1-m intervals from 0 to 100 m and at 5-m intervals from 100 to 200 m. These variables included elevation, patterned-ground feature (polygon center, rim, trough, frost boil), vegetation type, height of the plant canopy, thickness of the moss and dust layers, NDVI, leaf-area index (LAI), water depth, snow depth, and active-layer thickness. Vegetation was compared with types defined during the original vegetation surveys in the 1970s (Walker *et al.* 1980, Walker 1985).

Vegetation plots were established in polygon centers and troughs at 5, 10, 25, 50, 100, and 200 m from the road. Permafrost boreholes were drilled in ice-wedgepolygon troughs and centers at approximately the same distances from the road to examine the cryo-

Figure 4. The Colleen site showing transects T1 and T2, distances from the road, and locations of permanent vegetation plots (squares: c = polygon center, t = polygon trough) and permafrost boreholes (circles).

Figure 5. The Airport site in 1949 and 2015. The areas of Transects 3, 4, and 5 are shown by the red rectangles in both images.

structure of the permafrost and the thicknesses of frozen protective soil layers above ice wedges.

1.1.3 Airport Site (AS)

The Airport site (AS) was established in 2015 along the Dalton Highway just east of the Deadhorse Airport (Figure 1b). In 1949, most of the site was covered by low-centered ice-wedge polygons with varying degrees of wetness in polygon centers (Figure 5, top). By 2015, the highway, numerous gravel pads, abandoned roads, and several floods had altered the drainage patterns and converted most low-centered polygons to high-centered polygons, with extensive thermokarst ponds in the troughs (Figure 5, bottom). The modern history of the AS (1949–2015) is recorded in nearly annual high-resolution aerial photographs and remote sensing images (Appendix 1, Figure A1.2).

INTRODUCTION

Figure 6. The Airport site. **a.** Transect T5 and **b.** Transects T3 and T4 showing distances from the road, and locations of permanent vegetation plots (squares: c = polygon center, t = polygon trough) and permafrost boreholes (circles).

AS transects T3, T4, and T5 were surveyed in 2015 (Figure 6). Transect T3 is on the southeast side of the highway in an area previously covered by wet low-centered polygons, but which is now heavily impacted by thermokarst and road dust. Dry high-centered polygons with deeply eroded troughs are dominant along T3. Transect T4 is on the northwest side of the highway and has been impacted by gravel displaced by floods and breaches in the road, as well as extensive impacts from older roads. It is continuously flooded and does not drain by late summer.

Gravel deposits from previous flood events prevented drilling deep boreholes with a SIPRE corer near the road at T4, so transect T5 (Figure 6a) was surveyed approximately 100 m south of T4 to provide better options for permafrost coring on the northwest side of the road. T5 is in an area of low-centered polygons with extensive flooding in interconnected thermokarst troughs. Within 25 m of the road, transect T5 is very heavily disturbed by trenching for buried fiber-optic cables. Sampling along the T5 was confined to 25–100 m from the road.

Detailed methods and data from summer and winter observations at CS and AS are in previous data reports (Walker *et al.* 2015, 2016, 2018) and three journal articles (Kanevskiy *et al.* 2017, 2022, Walker et al. 2022). A time series of aerial photos of these sites from 1949 to near present are in Appendix 1.

2 2020 Field Season

2.1 Overview

2.1.1 Goals

- Conduct reconnaissance for a Natural Ice-Rich Permafrost Observatory (NIRPO) near Deadhorse.
- Monitor late-season thaw depths, water-depths, ice-wedge polygon microrelief contrasts, and vegetation distribution along six transects at the Colleen, Airport, and Jorgenson sites.
- Establish and conduct thaw- and water-depth measurements along several new transects in the NIRPO reconnaissance area.
- Examine previous ice-wedge boreholes at the Colleen site to check the status of ice wedges.
- Obtain basal peat samples from drained thaw lake basins in the reconnaissance area for C14 dating.
- Training and field-site overview for a new graduate student and postdoctoral fellow.

2.1.2 Participants

- Dr. Donald A. (Skip) Walker (UAF, Institute of Arctic biology; faculty): Project PI, vegetation component
- **Dr. Mikhail Kanevskiy** (UAF, Institute of Northern Engineering; faculty): Permafrost component
- **Dr. Helena Bergstedt** (UAF, INE; postdoctoral fellow): Remote sensing
- Emily Watson-Cook (UAF, Dept. of Biology and Wildlife, M.S. student): Vegetation component

2.1.3 Schedule

- **August 12.** Drive to and camp at Coldfoot with stops at Yukon R., Arctic Circle, and Finger Mtn.
- August 13. Drive to and camp at Galbraith Lake, with stops at Sukakpak Mtn., frozen debris lobe near Wiseman, and Atigun Pass.
- **August 14.** Drive to Prudhoe Bay, camp at MP 405 on gravel bar of the Sagavanirktok R.
- **August 15.** Jorgenson site (JS): Survey thaw, water depths, and vegetation transitions along 250 m transect.
- August 16. Airport site (AS): Survey thaw and water depths at transects T3, T4, and T5. Obtain cores to examine ice wedge status.

- **August 17.** NIRPO reconnaissance area: Survey drained thaw lake moisture gradient, thaw and water depths, and vegetation. Collect basal peat samples.
- August 18. Colleen site (CS): Survey thaw and water depths at transects T1 and T2. Obtain cores to examine degradation and stabilization of ice wedges. Extend transect T1 to 600 m. Survey possible thermokarst-pond site. Establish new vegetation plots as training for M.S. student.

August 19. Drive to and camp at Middle Fork of Koyukuk River 3 bridge. Take cores of Sukakpak mounds.August 20. Drive to Fairbanks and unload trucks.

2.2 2020 NIRPO site reconnaissance (D.A. Walker)

Roadside areas at CS and AS have changed from their pre-oilfield status due to a combination of a warmer climate, altered drainage patterns, road dust, and other roadside disturbances that have resulted in ice-wedge degradation. Although the JS is relatively isolated from infrastructure compared to the CS and AS, drainage and vegetation patterns are affected by proximity to intensive development to the south and a pipeline access road adjacent to the site on the east. Another more remote area was needed to answer the question of what has happened in areas of the oilfield that are less affected by infrastructure. The site also needed to include a variety of different-aged surfaces where landscape evolution could be examined.

A potential Natural Ice-Rich Permafrost Observatory (NIRPO) was selected as distant as possible from major infrastructure but within the same landscape types as the Colleen and Airport sites. The center of the area was approximately 1.5 km NW of the JS, 1.7 km NNE of the CS and approximately 1.4 km from other infrastructures (Figure 7).

We later learned that most of this area is north of an oilfield boundary that stretches between the East and West Security Gates of the PBO and has restricted access. In 2021, a new NIRPO research site was surveyed south of the oilfield boundary in an area approximately 1 km west of the Jorgenson site (see Chapter 3, 2021 Field Season, Figure 14a).

Figure 7. 2020 NIRPO reconnaissance area showing transects NIRPO-1, BM-1, BP-1 and BP-2 (yellow lines).

2.3 Field methods and observations

2.3.1 NIRPO reconnaissance area transects

A 100-m transect was established at NIRPO-1 (Figure 7) for measuring thaw and water depths and other factors being monitored at transects in the JS, CS, and AS. The NIRPO-1 transect area has flat-centered icewedge polygons with moist tundra in the ice-wedgepolygon centers and extensive ponds and aquatic plant communities in the polygon troughs (Figure 8). 2020 thaw- and water-depth data from the NIRPO-1 transect are in Appendix 2, Table A2.4.

A large partially-drained lake basin in the southwestern part of the NIRPO area (Figures 7 and 9a) has a moisture gradient with moist tundra along the eastern margin of the basin, grading into wet sedge tundra over much of the basin to a complex wetland with numerous lakes with aquatic plant communities in the center of the basin. Three temporary sites (BM-1, BP-1, and BP-2) were established along a moisture gradient on the eastern side of the basin. Some areas, such as that at transect BP-1 have weakly developed ice-wedge polygons. Thaw depths were measured at 1-m intervals along 40-m transects at BM-1, BP-1, and BP-2 (Figure 9a) (Appendix 2, Table A2.5).

2.3.2 Basal peat samples (H. Bergstedt)

Basal peat samples were collected from the bottom of the peat layer at BM-1, BP-1, BP-2, and two other nearby drained lake basins (BP-3 and BP-4) (Figure 9b).

Figure 8. 100-m transect at NIRPO-1. The site has flat icewedge polygons with moist sedge, dwarf shrub, and moss tundra in polygon centers, and water and aquatic communities in the troughs. Yellow pin flags mark 10-m intervals along the transect. (Photo: H. Bergstedt, P1060178)

Figure 9. Transect BP-1 in the large partially drained thawlake basin. **a.** The vegetation is dominated by wet sedge (Eriophorum angustifolium and Carex aquatilis) tundra. Small ridges are associated with weakly developed icewedge polygons. **b.** Basal peat sample from BP-1. (Photos: H. Bergstedt, P1060169, P1060144)

2020 FIELD SEASON

Samples were processed in the lab to remove contaminants and extract organic material suitable for C14 dating to determine when the peat started to form. Results are in Appendix 2, Table A2.1. Dating was done at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility through NSF Award 1806213.

2.3.3 Permafrost boreholes (M. Kanevskiy)

A total of 12 shallow permafrost boreholes were drilled in mid-August 2020, including nine in previously drilled ice wedges at the CS on transect T1 and three boreholes along a new 15-m transect at the AS. The frozen cores were described and photographed in the field and samples were collected for evaluation of ground-ice content in the INE UAF Laboratory. See Appendix 7, Table A7.1 for borehole locations.

2.3.3.1 Colleen Site (CS) boreholes

Nine boreholes were drilled at the same locations where ice wedges had been degrading or stabilizing during field studies in August 2014. Additionally, the status of ice wedges was estimated at several locations without drilling either because they looked stable (T1-50T-1 and -8), or had deep water (T1-200T-1, -2 and -3). Comparison of 2014 and 2020 data show that five ice wedges have not experienced significant changes or have experienced some minor stabilization (T1-50T-1, -2, -5, -8, and -9), and two ice wedges have experienced significant degradation (T1-100T-1 and T1-200T), detected by deeper ice-wedge troughs with water depths 32 and 36 cm respectively. These ice wedges were either degrading or very vulnerable in both 2014 and 2020, but in 2014 the troughs were dry. Another five ice wedges have experienced stabilization since 2014 (T1-5T-1, T1-10T-1 and -2, T1-25T-1, T1-50T-7). Of these, two that are located near the Spine Road and were actively degrading in 2014 (T1-5T-1 and T1-10T-1) have experienced significant stabilization detected by thicker intermediate and transient layers, possibly related to additional accumulation of road dust. Results are in Appendix 2, Table A2.3.

Data from redrilling boreholes show that degradation and stabilization of ice wedges may occur within the same area simultaneously. Similar results were obtained from the adjacent JS, where 21 sites were redrilled in July 2019 at the same locations where ice wedges had been either degrading or stabilizing during studies in 2011 and 2012 (Appendix 2, Table A2.3).

2.3.3.2 Airport site (AS) boreholes

Three new boreholes were drilled along a 15-m transect spanning an ice wedge near T4 (Figure 10). Cryostratigraphy, moisture and ground ice content are in Appendix 2, Table A2.2.

Figure 10. T4 boreholes, Prudhoe Bay, Airport Site (AS), vicinity of the T4 transect, August 16, 2020. **a.** Site of boreholes. The stake (right side of photo) marks the beginning of this transect in a polygon center (borehole T4-0) and the permafrost probe marks the location of borehole on the elevated polygon rim (T4-500). (Photo: M. Kanevskiy IMG 3439). **b.** Cryostratigraphic 15-m-long cross-section across the polygon based on the 3 boreholes, showing estimated positions of thaw depth (18 August 2020), active-layer, intermediate layer, permafrost and extent of the ice wedge. (Image: M. Kanevskiy)

2.3.4 Thaw and water depths (D.A. Walker)

Measurements of thaw and water depth were taken at 1-m intervals along a 100-m measuring tape using calibrated aluminum thaw probes pushed to the permafrost table (Figure 11a). Data are recorded along with notes on the polygon feature or microrelief at each location where measurements were made for the 100-m NIRPO-1 transect (Appendix 2, Tables A2.4) and the three 40-m transects (BM-1, BP-1, and BP-2) in the 2020 NIRPO reconnaissance area (Appendix 2, Tables A2.5). Along the JS transect, thaw and water depth were measured at every meter from 0-250 m (Appendix 2, Tables A2.6), the main sampling area where measurements have been repeated for past studies. At CS and AS transects T1 to T5, measurements were taken at previously placed pin flags spaced at 1-m intervals (Appendix 2, Tables A2.7 to A2.8).

2.3.5 Vegetation type distribution along the Jorgenson transect

Prior to oilfield development the JS and CS had similar landscapes with mainly wet low-centered ice-wedge polygons dominated by wet tundra in the polygon centers and troughs, moist tundra on the polygon rims, and scattered thermokarst pits containing water and aquatic plant communities. We were interested in the current distribution of vegetation along the CS and JS transects to compare with patterns observed on aerial photographs taken in 1949.

In 2020, the percentages of cover for moist tundra, wet tundra, and water/aquatic tundra were estimated along the Jorgenson transect for comparison with the previously measured distribution of vegetation along the roadside transects at the Colleen site. For each vegetation type, the sum of the lengths of the

Figure 11. Thaw-depth measurements. **a.** Measuring thaw along 40-m transect at BP-1. (Photo: H. Bergstedt, P1060163). **b.** Thaw depths (means \pm standard deviations) for the transects sampled 15–17 August 2020.

Figure 12. Comparison of the distribution of barren, moist, wet, and aquatic vegetation types along the Jorgenson transect in 2020 and the Colleen site transects T1 and T2 in 2014.

transect covered by the type were divided by the total length of the transect to determine the percentage cover by type.

The measurements indicate that the JS and CS T1 transects still have similar vegetation but that moist tundra now dominates because of the conversion of most low-centered polygons to polygons with either flat-, high-, or transitional polygon centers. There are also many new thermokarst ponds with water and aquatic communities. Transect CS T2 is on the flooded side of the road at the Colleen site and has much more water/aquatic tundra and wet tundra and much less moist tundra than JS or CS T1 (Figure 12).

2.4 New plots and potential study sites

2.4.1 Extension of Colleen transect T1

Transect T1 was extended to 600 m to get further from the dust effects of the original 200 m transect. Dust effects (reduced cover of lichens) were evident even at this distance, but the transect could not be extended further because of a major terrain transition at a drained thaw lake basin. Two new plots were established in moist polygon centers at approximately 435 m from the road.

2.4.2 A potential thermokarst-pond study site

Thermokarst ponds were not sampled during the vegetation surveys of the 1970s (Walker 1985). Further studies are needed to examine the variety of plant communities and successional processes in the deeper thaw ponds. A new thaw-pond component of the NNA-IRPS research will be developed as the focus of Emily Watson-Cook's M.S. thesis. We visited several ponds in 2020 that appeared to be good sites for future studies. A good example is Bear Pelt Pond located along the extension of transect T1 (Figure 13).

Figure 13. Bear Pelt Pond. *a*. Overview of the moderately large ice-wedge thermokarst pond. *b*. An emergent Hippuris vulgaris community in Bear Pelt Pond. (Photos: E. Watson-Cook, IMG 1231, IMG 1230)

3.1 Overview

Field work was conducted 13 July–3 August and 21 August–6 September 2021. The focus was the collection of baseline topographic surveys, aerial imagery, vegetation, and permafrost data from the Natural Ice-Rich Permafrost Observatory (NIRPO) site and the nearby Jorgenson research site (Figure 14).

Figure 14. a. Overview of the Colleen, Jorgenson, and NIRPO sites. **b–e.** Transects T6–T9 and **f.** Jorgenson transect with the locations of air temperature sensors, basal peat samples, terrestrial plots, aquatic plots, and permafrost boreholes sampled in summer 2021. See Figure 4 for an overview of Colleen transects T1 and T2.

3.1.1 Field-team members

3.1.1.1 Vegetation team

- **Dr. Helena Bergstedt** (UAF, Institute of Northern Engineering; postdoc): soils, basal peat samples.
- **Dr. Amy Breen** (UAF, International Arctic Research Center; faculty): Vegetation surveys
- Dr. Anja Kade (UAF, Dept. of Biology and Wildlife; faculty): Trace-gas fluxes
- Josephine Mahoney (UAF, Institute of Arctic Biology; undergraduate): Trace-gas fluxes, pond vegetation
- Zoe Meade (UAF, IAB; research assistant): Pond vegetation
- Jana Peirce (UAF, IAB; project coordinator): Logistics and photographer
- Zachary Spath (UAF, IAB; research assistant): Research assistant, vegetation surveys
- **Dr. Skip Walker** (UAF, IAB; faculty): Project lead and vegetation surveys
- **Emily Watson Cook** (UAF, IAB, Dept. of Biology and Wildlife; M.S. student): Pond vegetation

3.1.1.2 Remote sensing team

- **Dr. Ronnie Daanen, Barrett Salisbury** (Alaska Department of Natural Resources, Division of Geological and Geodetic Surveys): Ground topographic control and LiDAR acquisition
- **Dr. Ben Jones** (UAF, INE; faculty): Ground surveys and drone aerial imagery

3.1.1.3 Permafrost team

- **Dr. Mikhail Kanevskiy** (UAF, INE; faculty): Permafrost characterization
- **Dr. Dmitry Nicolsky** (UAF, Geophysical Institute; faculty): Permafrost temperature boreholes

- Nicholas Hasson (UAF, INE; PhD student): Permafrost temperature boreholes
- Sergei Rybakov (UAF, GI; PhD student): Permafrost temperature boreholes

3.1.2 Schedule

3.1.2.1 Mid-summer field work

Vegetation team (13 July-4 August)

- New NIRPO transects 6, 7, 8, and 9 established and marked with pin flags, aerial survey markers, and vertical snow poles.
- 35 terrestrial vegetation plots established along NIRPO transects; 17 of 35 plot surveys completed including plant species, soils, and environmental factors (Breen, Walker).
- 40 aquatic plots established at Jorgenson and NIRPO sites; 13 of 40 plot surveys completed (Watson-Cook, Meade).
- Flux measurements at 27 terrestrial plot and 6 aquatic plots completed (Kade & Mahoney).
- 10 basal peat samples collected for C14 analysis (Bergstedt, Peirce).

Remote sensing (15-20 July)

- Aerial LiDAR survey (Daanen, Salisbury).
- Ground elevation survey of transects and plots (Daanen).

3.1.2.2 Late-summer field work

Vegetation team (21 August-4 September)

 Measured thaw depth, water depth, vegetation height, vegetation type and microrelief at JS, CS (T1, T2), AS (T3, T4, T5) and NIRPO (T6, T7, T8, T9) transects (Kanevskiy, Mahoney, Peirce, Spath, Walker, Watson-Cook).

b. Morning meeting in the AOH conference room. Left to right: Skip Walker. Amy

- Biomass samples collected and vegetation types, thaw and water depths recorded at NIRPO terrestrial plots (Mahoney, Peirce, Spath, Walker).
- 18 terrestrial plots surveyed (Walker, Breen).
- 16 Aquatic plots surveyed (Watson-Cook, Mahoney).

Permafrost and remote sensing teams (21 August–6 September):

- Characterized permafrost in polygon centers, troughs and ponds along transects at Jorgenson and NIRPO (Kanevskiy).
- Permafrost temperature thermistors and loggers in installed in polygon centers along NIRPO and Colleen transects (Nicolsky, Hasson, Rybakov).
- Aerial drone and ground DGPS surveys of plots and transects completed (Jones).

3.1.3 Logistic support

Battelle ARO provided expedition support, including safety training, two trucks, and lodging in Wiseman, Coldfoot, and Deadhorse. The Arctic Oilfield Hotel in Deadhorse provided a conference room for our daily morning meetings and evening sample preparation, and freezer space for our samples (Figure 15).

3.1.4 NIRPO base camp

A base camp was established to provide equipment storage, overnight shelter, and a field toilet at the NIR-PO site (Figure 16a). The camp was accessible on foot via a 25-minute walk (1.2 km) from the nearest gravel pad. A Quicksilver R-44 helicopter (Figure 16b) stationed at the Teshekpuk Lake Observatory transported camp and field supplies from the Deadhorse Airport to the site in three trips, including two sling loads.

3.2 Remote sensing

3.2.1 LiDAR imagery (R.P. Daanen)

LiDAR data provide topographic information for ground, water, and snow surfaces necessary for NNA-IRPS hydrological, permafrost, and vegetation studies. Ground control points were surveyed for the IRPS study areas 17–19 July 2021 using a Trimble R10-2 Real Time Kinematic Differential Global Positioning System (RTK-DGPS). A base station was placed on the NIRPO pingo for good sky view. The base station was operated on the same location collecting three epics of 4-hr static data. These data were used to find the best position in the Online Position User Service from NOAA. The fixed position was used to correct all RTK-DGPS observations.

High- and low-resolution LiDAR imagery were collected with a DGPS-operated Riegl VUX1-LR LiDAR system with an integrated Global Navigation Satellite System (GNSS) receiver and Northrop Grumman inertial measurement unit (IMU) system. The integration was designed by Phoenix LiDAR systems. This survey was flown with a pulse rate of 800,000 pulses/second, at a scan rate of 180–200 scans/second. This survey was flown with an average elevation of 100 m above ground level and a ground speed of approximately 45 m/s with a Pollux Aviation R44 helicopter configuration. The scan angle was set from 80–280 degrees, centered normal to the bottom of the aircraft.

The NIRPO intensive study areas, including the Colleen, NIRPO, Jorgenson, and Airport sites were surveyed at high resolution (approximately 110 pts/m²) (Figure 17, horizontal flights lines). A larger area was surveyed at relatively course resolution (13–19

Figure 16. *a.* NIRPO base camp (from left): Helena Bergstedt, Amy Breen, Skip Walker. (Photo: A.L. Breen, IMG E6967). *b.* Quicksilver helicopter, pilot Eryk de la Montaña and Skip Walker preparing sling load. (Photo: J.L. Peirce IMG 4119).

2021 FIELD SEASON

pts/m²), including the northern portion of the Dalton Highway and much of the eastern portion of the Prudhoe Bay oilfield, including areas A, B, and C in Figure 1a (Figure 17, diagonal flights lines). The resulting data provide detailed views of the relative height of the ground surface at several scales (Figure 18). Elevations of ground control points will be archived at the Arctic Data Center NNA-IRPS portal (arcticdata.io/catalog/portals/nna-irps) and LiDAR data and imagery will be archived with the State of Alaska DGGS.

3.2.2 UAV and Ground-based DGPS Surveys (B.M. Jones)

3.2.2.1 Differential GPS (DGPS) Survey

Data collection. Data were collected 25–26 August 2021 at the CS, JS, and NIRPO sites and on 27 August at the AS using a Leica Viva GS10 Base Station (Figure 19a) and GS15 Rover. Real-Time Kinematic corrections and the base station and rover data were post-processed using the NGS Online Positioning User Service (OPUS). At the NIRPO site, the base station was established on top of the NIRPO pingo. A red survey marker cap was placed in the ground at the AS where the base station was established on the south side of the small access road west of the Sagavanirktok River.

Base station post-processing. Data from the NIRPO area were collected on 26 August 2021 every 5 seconds for nearly 7 hours. At the AS, data were collected on 27

Figure 17. *LiDAR flight lines for the NNA-IRPS studies. Diagonal flight lines were surveyed at relatively course resolution (13–18 pts/m²). The core area (horizontal flight lines) was surveyed at 110 pts/m². (Image: B. Salisbury. Base image courtesy of Google Maps Maxar Technologies.)*

August 2021 every 5 seconds for 3 hours. The post-processed locations of the base station based on the OPUS solutions were used to correct the initial location of the base station using the Leica Infinity software version 3.2.1.3319, which post-processed the location of all RTK rover points. The ITRF2014 solution was used to correct the latitude, longitude, and ellipsoid heights of the base

Figure 18. *LiDAR imagery for NNA-IRPS study areas. a. The Deadhorse region showing the location of the NIRPO study area, Lake Colleen, and the Deadhorse Airport. b. Detail of the NIRPO study area with locations of ground-control points (black triangles), transects* T6–T9 *and the survey base station on the NIRPO pingo. c. An area of polygonal terrain to the north of the pingo showing two different scales of patterned ground. (Base imagery: R.P. Daanen)*

Figure 19. UAV base station on the NIRPO pingo. *a.* Leica Viva GS10 Base Station for surveying ground points. *b.* DJI D-RTK 2 Mobile Station and DJI P4RTK quadcopter for the UAV surveys. (Photos: B.M. Jones)

station and rover points. ITRF2014 and WGS84 agree at the centimeter level, yielding conventional 0-transformation parameters. Orthometric heights were derived using the Geiod12b transformation.

Data. 1,488 DGPS points. The table and shapefile include information on the point description (Point ID), date of data collection, latitude, longitude, WGS84 ellipsoid height, and orthometric height (geoid 12b). Data will be archived at the Arctic Data Center NNA-IRPS portal (arcticdata.io/catalog/portals/nna-irps).

3.2.2.2 UAV Survey

Permission for UAV operation. FAA through a certificate of waiver or authorization – FAA Form 7711-1 2021-P107-WSA-20670.

UAV base station. The UAV (drone) base station was established at the same pingo location as the Leica Base Station (Figure 19b) and the post-processed location of that point based on the OPUS solution was input into the mission prior to the flights taking place. All images were tagged relative to this post-processed

Figure 21. Examples of derived products from the UAV surveys. **a.** Orthophoto mosaic of the NIRPO site. **b.** Digital surface model of the NIRPO site. **c.** 3-D view of orthophoto mosaic and digital surface mode of the NIRPO pingo. **d.** Topographic survey across a small marl-bottomed pond. (Images: B.M. Jones)

DGPS base station position. This eliminated the need for further post-processing of the drone images.

UAV flight. The survey acquired 2,463 images on 29 August using a DJI P4RTK quadcopter and a DJI D-RTK 2 Mobile Station. The survey area included the CS, JS, and NIRPO sites. The drone was flown at 100 m agl and flight speeds varied from 7–8 m/s. The frontlap and sidelap of the mission were set at 80% and 70% respectively.

Image processing. 2,431 images were processed in the software Pix4D Mapper to produce a colorized point cloud (220,183,349 points), an orthophoto mosaic, and a digital surface model of the NNA-IRPS study area at spatial resolutions of 5 cm (Figure 20). The data were processed as WGS84 UTM Zone 6 North in Ellipsoid Heights. The mean horizontal error in Pix4d processing was estimated at 10 cm. During the flight mission, the vertical error of the drone relative to base station was +/- 3cm.

Products. Examples of the resulting data include a colored orthomosaic image and surface elevation model of the NIRPO site (Figure 21a, b), a 3-D orthomosaic image overlaid on the 3-D surface model of the NIRPO pingo (Figure 21c), and a topographic survey across a small marl-bottom pond that illustrates the possibility of surveying bottom elevations in shallow ponds and lakes with clear water (Figure 21d).

3.3 NIRPO transects (D.A. Walker)

3.3.1 NIRPO transect locations and methods

Three 200-m transects (T6, T7, T8) and one 100-m transect (T9) were established at the NIRPO site on surfaces at different stages of ice-wedge evolution/ geomorphology. Yellow pin flags were place at 1-m intervals and orange pin flags at 5-m intervals (Figure 22). White 1.2-m tall PVC poles marked with the

Figure 22. *East end of NIRPO transect T8. See text for explanation of ground markings along the transect. (Photo: J.L. Peirce, IMG 4283).*

transect number and distance from the start were set onto rebar at 0-, 50-, 100-, 150-, and 200-meters. Orange surveyors' tape was wrapped at the top of each pole to make it easier to locate during winter surveys. The end points of each transect were marked with six white 13-gallon trash bags in an X (Figure 22) and 10inch (25-cm) paper plates were placed at the base of the poles at 50-m intervals along the transect to ensure transects would be visible on aerial imagery.

Transect T6 (200 m) is situated on a relatively old surface elevated above the drained thaw-lake basins that surround it. The surface forms are mainly well-developed transitional and high-centered polygons with many thermokarst ponds in the polygon troughs (Figure 23).

Transect T7 (200 m) is in a drained lake basin that has low-centered polygons and thermokarst features on the east end of the transect and disjunct polygons and shallow marl-bottomed ponds on the west end (Figure 24).

Transect T8 (200 m) is in a young drained lake basin with disjunct polygon features on the east end and younger flat featureless terrain on the west end (Figure 25).

Transect T9 (100 m) crosses the boundary of a large drained thaw-lake basin. The east end is on a low bluff of the lake basin with well drained high-centered polygons (Figure 26a). The west end of the transect has weakly developed low-centered ice-wedge polygons with infrequent thermokarst (Figure 26b).

Figure 23. Transect T6 on the oldest (primary or residual) surface with no evidence of thaw lakes. **a.** Flat-centered polygon with partially eroded polygon rims and a thermokarst pond in a polygon trough. **b.** Transitional polygon with partial rim and thermokarst pond at intersection of polygon troughs. (Photos: D.A. Walker, IMG 0301, IMG 0299)

Figure 24. Transect T7 in an older drained lake basin with mixed terrain. **a.** East end of T7 with well-developed low-centered polygons and thermokarst in polygon troughs. **b.** West end of T7 with younger landscape, including shallow ponds with marl deposits and disjunct polygon features. (Photos: J.L. Peirce, IMG 4914, IMG 4235).

3.3.2 2021 transect surveys: Vegetation height, water depth, and thaw depth

Thaw depths, water depths, vegetation heights and vegetation types were recorded along the CS (T1, T2), AS (T3–T5), NIRPO (T6–T9), and JS transects during 23–26 August 2021. Measurements were made at 1-m intervals along all transects. Thaw and water depths were measured with a 0.95-cm (3/8 inch) x 1.2-m steel probe. Vegetation height was measured with a meter stick. In aquatic sites, vegetation height was measured from the bottom of the pond. Vegetation was classified using vegetation types modified from Walker (1980, 1985) in Appendix 4, Table 4.7. Data are in Appendix 3, Tables A3.1 (CS), A3.2 (AS), A3.3–A3.4 (NIRPO site), and A3.5 (JS).

The roadside transect T4 (flooded) had the deepest mean thaw (66 \pm 19 cm) and water depth (21 \pm 18 cm). The shallowest mean thaw depth was along Transect T9 (38 \pm 5 cm). The Jorgenson transect had intermediate mean thaw depths (54 \pm 6 cm). The roadside transects (T1–T4) had relatively deep and more variable thaw compared to the NIRPO transects (T6–T9) (Figure 27).

3.4 NIRPO terrestrial vegetation plots (D.A. Walker, A.L. Breen, O. Hobgood)

3.4.1 Terrestrial plot surveys

Vegetation in the NIRPO study area was surveyed in 35 permanent 1-m x 1-m plots. The locations of

Figure 25. Transect T8 with young surfaces in drained lake basin. **a.** East end of T8 in somewhat older portion of the drainedlake basin with disjunct polygon rims. **b.** West end of T8 with somewhat younger surface and few disjunct polygon rims or other polygonal features. (Photos: J.L. Peirce, IMG 4761, IMG 4966)

Figure 26. Transect T9 along margin of drained lake basin. **a.** East end of T9 with flat-centered and transitional polygons on an older surface outside the lake basin (similar to Transect 6 (Figure 23b). **b.** Somewhat older portion of the drained lake basin with disjunct polygon rims (similar to east end of T8 (Figure 25a). (Photos: J.L. Peirce, IMG 4771, IMG 4964)

Figure 27. Mean thaw depths, water depths, and vegetation heights (\pm s.d.) for transects sampled 23–27 August 2021. The roadside transects (T1–T5) had deeper thaw than less disturbed transects (Jorgenson and T6–T9). Measurements along with vegetation height and polygonal features at each meter along the transects are in Appendix 3, Tables A3.1 to A3.5.

Figure 28. Terrestrial vegetation plot. **a.** Skip Walker and Amy Breen recording species cover abundance using Braun-Blanquet (Westhoff and van der Maarel 1978) protocols. The four corners of the 1-m x 1-m plot are marked with pre-labeled wooden stakes. The short rebar stake with aluminum cap is in the center of plot and has the plot number stamped on the cap for vertical photographs of the plot. The 1.5-m post is for locating the plot in winter. (Photo: J.L. Peirce, IMG 4495). **b.** Soil plug after removal from soil pit for description. Nails mark horizon boundaries. (Photo: A.L. Breen, IMG 7019).

the plots are shown along transects T6–T9 in Figure 14b-e (green squares) and their latitude, longitude and elevation fixed in a DGPS survey (Appendix 4, Table A4.1). The corners of the plots were marked with the plot numbers (21-01 to 21-35). The center of each plot was marked with a 3/8-inch x 30 cm rebar pole with an aluminum cap stamped with the plot number (Figure 28a). A white 1.5-m vertical PVC pole with the plot number and blue surveyors' tape at the top of the pole was placed next to the rebar pole for locating the terrestrial plots in winter. A 25-cm-diameter white paper plate was anchored in the plot center with the center pole to make the plot visible for summer aerial surveys. Photos of the plots are in Appendix 4, Tables A4.2 (vegetation), A4.3 (soils), and A4.4 (landscapes).

Species composition and environmental factors were surveyed in each plot following the protocols developed for the Colleen and Airport sites (Walker *et al.* 2015, 2016). Data are in Appendix 4. The plot sur-

veys included environmental site factors and plant growth form data (Table A4.10; see Tables A4.5–A4.7 for codes used for categorical and scalar variables, habitat types, and vegetation types). A list of plant species includes field names, accepted names, taxon codes, and plant growth form (Table A4.8). A summary table includes transect location, vegetation type, microrelief, habitat type, and field name of the plant community for each plot (Table A4.9). Plant species cover abundance by plot is in Table A4.11.

Soil plugs were removed from a site adjacent to each terrestrial vegetation plot (Figure 28b). The major soil horizons were briefly described, and soil samples were collected from the top organic horizon and the mineral horizon using a 180 cm³ soil can. Soil analyses were done in the UAF Forest Soils Lab including soil color, gravimetric soil moisture, volumetric soil moisture, bulk density, particle size, organic matter, and pH (Table A4.12). Figure 29 summarizes some trends related to soil moisture and organic matter.

Figure 29. Summaries of selected NIRPO terrestrial-plot soil variables. *a.* Volumetric soil moisture by vegetation type. *b.* Percent organic matter by soil horizon. *d.* Soil pH vs. organic matter using the saturated paste method and a 1:2.5 soil:water ratio. The box and whisker diagrams display the distribution of data points. Box limits indicate the range of the central 50% of the data, with the central line marking the median value and the X marking the mean values. "Whiskers" extend from each box to capture the range of the remaining data, with dots placed past the line edges to indicate outliers.

Figure 30. Biomass harvest. **a.** Cutting out a 50-cm x 20-cm slice of tundra using a metal frame to guide the cut and a serrated bread knife. **b.** Zip-top gallon freezer bag containing one half of the tundra slice. (Photos: J.L. Peirce, IMG 5608, IMG 5602)

3.4.1.1 Terrestrial-plot aboveground biomass

The terrestrial plots were harvested for aboveground biomass during 26–31 August 2021. A 50-cm x 20-cm metal sampling frame was nailed to the tundra near each plot in tundra that matched as closely as possible the composition and structure of the tundra in the terrestrial plot. The tundra within the frame was removed by first cutting around the inner margin of the frame with a serrated bread knife (Figure 30a) and then cutting horizontally 2–3 cm beneath the surface to detach a slice of tundra. The tundra slice was then divided in half, and each half placed in quart-size zip-top bag labeled with the plot number and date of harvest (Figure 30b). The samples were frozen for transport to UAF where they were thawed and the live aboveground plant parts were clipped with scissors and sorted into growth forms: evergreen shrubs, deciduous shrubs (leaves and woody stems), graminoids (live and dead), horsetails, forbs, mosses, lichens, and litter. The biomass data are in Table A4.13. A summary of the data by plant growth form, vegetation type, and surface form is shown in Figure 31.

3.4.1.2 Terrestrial-plot soil temperature loggers

To measure the insulative effect of the vegetation and peat layers, 60 temperature loggers (Maxim iButtons° DS1922L Thermochon 8K, resolution \pm 0.5° C)

Figure 31. Aboveground biomass by plant growth forms for NIRPO vegetation types and surface form features.

2021 FIELD SEASON

Figure 32. Temperature logger placement in terrestrial plots. **a.** Sealed logger placed in small zip-top bag labeled with the plot number. **b.** Orange ribbon attached to the bag. **c.** Soil pit after insertion of the loggers just beneath the surface and at the base of the organic layer, with orange ribbons displayed above ground. (Photos: J.L. Peirce, IMG 4510, IMG 4632, IMG 4823).

were programmed to log the temperature every four hours. Two temperature loggers were installed adjacent to each terrestrial plot: one was inserted just beneath the soil surface and a second at the base of the organic soil horizon in the hole where the soil plug was temporarily removed. Loggers were waterproofed by coating with spray plastic (Plasti-dip), tied in a finger from a nitrile rubber glove, and sealed in a small zip-top bag marked with the iButton ID number (Figure 32a). An orange ribbon tied to each bag was displayed above the ground surface to aid in later retrieval (Figure 32b, c). All loggers were installed by 18:00 26 July 2021. Serial numbers, field numbers, and location information for all temperature loggers installed at terrestrial plots are in Table A4.14.

3.5 Aquatic vegetation plots (E. Watson-Cook)

3.5.1 Plot locations and sampling protocols

Thirty-nine aquatic vegetation plots were surveyed, including 19 at the JS and 20 at the NIRPO site near transect T6 (Figure 33a and Appendix 5, Table A5.1). Locations are also shown in maps of transects T6, T9 and the JS (Figure 14, blue squares). Plots are on older primary (residual) surfaces with abundant thermokarst ponds. Ten ponds contained paired plots, where one is located in a vegetated area of the pond and one in a sparsely vegetated area (Figure 33b). Data are in Appendix 5, including photos of plots (Table A5.6) and soil samples (Table A5.7).

The list of plant species includes acrocarpous and pleurocarpous mosses, forbs, and a non-tussock sedge (Table A5.2). Species nomenclature followed the Pan Arctic Species List (Raynolds *et al.* 2013). Percent spe-

cies cover abundance (Table A5.3) was estimated within each 1-m² plot using a square quadrat as a visual aid (Figure 33c, d). Total absolute percent cover often exceeded 100% in dense stands due to overlapping canopy layers. Voucher collections were made of all species found within a plot, and a representative sample of each species will be deposited in the UAF Herbarium.

Environmental site factors and plant growth form cover values were surveyed following protocols developed for the CS and AS (Walker *et al.* 2015, 2016), and are summarized in Table A5.4, including water chemistry characteristics and measurements of water depth, thaw depth, and pond sediment thickness. Pond dimensions were measured with a 100-m tape stretched across the pond at its maximum width and perpendicular to the maximum width.

3.5.2 Temperature measurements

Water and sediment temperatures were determined using temperature loggers (Maxim iButtons[®], models DS1921G and DS1922L) placed at three depths. Loggers were waterproofed using the same methods as for terrestrial plots. After being placed in small ziptop bags labeled with the plot number and relative location within the plot, two loggers were attached with duct tape and wire to a PVC pole marked with the height of the sediment surface and the top of the submerged vegetation layer. A third logger was taped beneath a small square of foam insulation to measure the temperature at the water surface while protected from solar radiation (Figure 34a). The PVC pole was pushed through the foam and a large enough hole created to allow the foam to float freely once the PVC was installed adjacent to the plot in the bottom of the pond using 3/8-inch rebar (Figure 34b, c).

Figure 33. Aquatic vegetation plots. **a.** Locations of plots at the JS and NIRPO sites. **b.** Layout of a vegetated and sparse plot within a thermokarst pond. (Image: E. Watson-Cook). **c.** 1-m x 1-m plot and square quadrat, which was used as a visual aid in percent cover estimation. (Photo: E. Watson-Cook, IMG 3537). **d.** Emily Watson-Cook and Zoe Meade sampling plant-community composition and site factors in a Sparganium hyperboreum aquatic plant community within a 1-m x 1-m plot. (Photo: J.L. Peirce, IMG 4593)

In cases where the top of the submerged vegetation was at the pond surface, one of the three sensors was omitted. At sparse plots co-located near vegetated plots in some ponds (Figure 33b), loggers were placed at the water surface and at the sediment surface. A third logger was placed at the same height above the sediment as the logger located at the top of the submerged vegetation layer in the adjacent vegetated plot to allow for direct comparison of temperatures in vegetated and sparsely vegetated areas. At the NIRPO site, 15 poles with temperature loggers were installed at vegetated plots and five at sparse plots. At JS, 14 poles were installed at vegetated plots and five at sparse plots.

To compare temperatures in small ponds with those in a larger body of water, an additional set of loggers was installed in a lake just south of the JS (Figure 33a, purple point). Air temperature was also measured. At the JS, a logger was located on the PVC pole at plot 21A-03 at a height of 35 cm above the water surface (115 cm above the sediment). At NIRPO, one was located on the pole marking the east end of transect T6 at a height of 1 m. These sensors were attached to the PVC pole using wire and tape. A small plastic cup, slit to allow air flow, was placed around the logger to limit the effects of direct sunlight.

A total of 120 temperature loggers (60 at each site) were set to record measurements every 60 minutes. These data were downloaded, trimmed to the same time period beginning at 18:00 on 19 July 2021 and ending at 8:00 on 23 August, a period of 34 days and 14 hours. An additional 20 high-resolution DS1922L iButtons^{*} (10 at each site) were set to log the temperature

Figure 34. In aquatic plots, two waterproofed sensors were attached with duct tape and wire to a PVC pole to record temperature at the sediment surface and top of the submerged vegetation layer every hour. A third was taped to the underside of a square of foam insulation to measure temperature at the water surface. (Photos: J.L. Peirce, IMG 4335, IMG 4405, IMG 4797).

every 240 min. and are still in the field. Information on iButtons[®] installed at aquatic plots is in Table A5.5.

3.5.3 Biomass sampling

Biomass samples were collected to quantify aboveground biomass within thermokarst ponds. Samples were taken outside each plot, within the same homogeneous area of vegetation as the plot. Samples were collected in late August near the end of the growing season. A coring device was modeled after a previously described aquatic biomass sampler (Madsen *et al.* 2007). The dimensions were altered and a steel stovepipe added to the end to provide a sharp coring edge (Figure 35a). The cylindrical biomass and soil cores had a diameter of 15.24 cm (6 in), and a circular cross section area of approximately 182 cm²).

To extract samples, the corer was inserted into the vegetation layer, as well as a small amount of the sediment layer since the additional material helped to hold the sample in the corer. Rotating the corer while pushing it downward allowed the device to effectively cut through dense vegetation. The corer was sealed with PVC cement, except for the end of one handle where an air-tight cap was placed over this handle once the corer was inserted into the sediment (Figure 35b). This allowed the intact sample to be removed with vacuum suction and to be released from the device once the cap was removed (Figure 35b).

Once the core was removed, a knife was used to cut through vegetation at the sediment surface in order to obtain a sample of aboveground biomass. The samples were thoroughly washed in both the field and lab to remove any trapped mineral sediment, and they were kept cool before sorting and drying. Biomass samples were sorted into the following plant functional types (PFTs): moss, forb, graminoid, and shrub. Material too fragmented or decomposed to identify as a particular PFT was considered litter. The samples were dried at 65 °C until a constant mass was obtained (approximately one week). Biomass and soils data are included in Emily Watson-Cook's M.S. thesis (2022, unpublished).

Figure 35. a. Coring device used to collect biomass and soil samples and an intact core sample removed from the coring device post-extraction. b. The corer inserted into pond sediment with the cap sealing the open handle. (Photos: E. Watson-Cook, IMG 3631, IMG 3630)

3.5.4 Soil sampling and analyses

Soil samples were collected adjacent to each plot using the coring device described above. The device was inserted in the soil to the top permafrost layer. The thickness of the litter layer, organic horizon, and mineral horizon were measured with a meter stick. Wet and dry soil colors were determined using Munsell soil color charts (Munsell Color 1975). Samples were collected in a 180-cm³ soil can to determine volumetric soil moisture and bulk density of the organic and mineral horizons. Additional soil was collected to ensure adequate material for all the analyses.

Following collection, samples were kept frozen until they were analyzed in the UAF Forest Soils Laboratory. Samples were dried at 65 °C until they reached a constant mass (approximately three weeks) to determine gravimetric and volumetric soil moisture and bulk density (Peters 1965, Gardner 1986). The samples were ground using a mortar and pestle. The gravel fraction and coarse organic matter were removed using a 2-mm sieve. Soil pH was determined using the saturated paste method (McLean 1982) and an Oakton 810 Series pH meter. Soils were ashed at 550 °C for seven hours to determine percent soil organic matter (SOM). The Bouyoucos hydrometer method (Bouyoucos 1936) was used to determine the percentage of sand, silt, and clay for each sample. **Table 1.** Sampling strategy for measuring trace-gas fluxes,

 NIRPO site, Prudhoe Bay, Alaska, July 2021.

Transect	Landform	Surface form element	Vegetation type	Number of samples
T6	Residual surface	Polygon flat center	U3	3
T6	Residual surface	Polygon flat center	U4	3
T6	Residual surface	Polygon trough	U4	3
T6	Residual surface	Polygon trough	M2	3
T6	Residual surface	Pond, moss mat	?	3
T6	Residual surface	Pond, bare	?	3
T7	Older drained lake basin	Low-centered polygon rim	U4	3
T7	Older drained lake basin	Low-centered polygon center	M2	3
T7	Older drained lake basin	Low-centered polygon trough	M4	3
T8	Younger drained lake basin	Featureless	M2	3
Т8	Younger drained lake basin	Featureless	M4	3

3.6 Trace-gas flux study (A. Kade)

Trace-gas fluxes were measured during 16-24 July 2021 at 27 terrestrial and six aquatic plots co-located with the terrestrial and aquatic plots selected for surveys. Three representative plots were selected for each

Figure 36. Trace-gas flux measurements. **a.** Anja Kade and Josephine Mahoney preparing to make flux measurements using a 0.7-m x 0.7-m chamber. **b.** Anja Kade recording trace-gas flux and respiration in a wet-tundra plant community. (Photos: J.L. Peirce, IMG 4212, IMG 4197)

Figure 37. *a.* Mean ecosystem respiration and *b.* net ecosystem productivity at PAR 600. Preliminary analysis of peak-season CO_2 fluxes indicate that net ecosystem exchange (NEE) was generally greater in troughs than polygon centers or rims, with the highest CO_2 uptake occurring in the very wet M4 troughs.

vegetation type on various patterned-ground features, such as polygon centers, rims, and troughs (Table 1).

Chamber-based methods were used to measure ecosystem respiration (ER) and the light response of net ecosystem exchange (NEE) and gross ecosystem exchange (GEE) at each study plot. Mid-day carbon dioxide, humidity, and methane concentrations were measured by connecting a clear Plexiglas chamber (0.7x0.7x0.25 m) to an LI-7810 portable infrared gas analyzer in closed-path configuration (Li-Cor Inc., Lincoln, Nebraska) and fitting the chamber to a portable rectangular base with an airtight polyethylene skirt (Figure 36). Two small fans mixed the air within the chamber. The LI-7810 recorded internal trace-gas concentrations, while temperature, barometric pressure and photosynthetic active radiation (PAR) were logged simultaneously to a Campbell CR-6 data logger each second over a 40-second period.

At each plot, two to three measurements were taken under full sunlight and three levels of successive

Figure 38. Helena Bergstedt and Skip Walker examine a soil plug from a terrestrial vegetation plot for C14 dating. Ten basal peat samples were collected in July 2021 for possible dating. (Photo: J.L. Peirce, IMG 4452)

shading, ending in complete darkness. Shading was provided with layers of fiberglass window screening (approximately 1.5 mm mesh). Each successive layer of shading reduced the ambient light intensity by approximately 50%. To obtain complete darkness for ER measurements, the chamber was covered with an opaque tarp. The chamber was ventilated between measurements.

For each data set, only periods with stable PAR values were used to calculate net CO_2 flux. From these data, a light-response curve was constructed for each plot by interpolating between measured light intensities. Net CO_2 flux was calculated as NEE = $(r^*V/A)^*(dC/dt)$, where r was air density (mol/m³), V is the chamber volume (m³), dC/dt was the rate of change in CO_2 concentration (mmol/mol/s), and A was the surface area of the chamber (m²). In the preliminary analysis of CO_2 fluxes, NEE values were reported at 600 mmol photons/m²/s, because this light level occurred consistently in the field. GEE was calculated as the difference between NEE and ER. Negative GEE and NEE values indicate carbon uptake by the vegetation, according to the micrometeorological sign convention.

Preliminary analysis of peak-season CO_2 fluxes indicate that NEE was generally greater in troughs than polygon centers or rims, with the highest CO_2 uptake occurring in the very wet M4 troughs (Figure 37). For example, when comparing results within the same vegetation type, such as moist tundra U4 or wet tundra M4, troughs took up significantly more CO_2 than polygon centers or rims. Presumably, nutrient dynamics in the troughs are more favorable. The CO_2 flux data showed no consistent pattern when considering the chronosequence from old residual surfaces to more recently drained lake basins. Data from the pond plots were erratic without clear trends, possibly due to methodological errors. A new method for aquatic plots will be developed for the July 2022 campaign. Flux data will be archived at the Arctic Data Center project portal (arcticdata.io/catalog/portals/nna-irps).

3.7 Basal peat collection (H. Bergstedt)

On July 19 2021, ten basal peat samples were collected near terrestrial vegetation plots along transects T6-T9 to complement samples collected in 2020 for accelerator mass spectrometry (AMS) C14 dating. Sample sites were chosen at the NIRPO site near plots representing characteristic vegetation types. Each soil plug was described (Figure 38), including thaw depth, water depth, organic thickness, dominant texture, dominant mineral, state of the organic horizon (hemic, fibric, sapric), and depth where the samples were taken (Appendix 6, Table A6.1). After description the soil plug was replaced in the pit. Basal peat samples were frozen for later processing to remove contaminants and extract organic material suitable for C14 dating. Results will be archived in the Arctic Data Center NNA-IRPS project portal.

3.8 Permafrost cryostratigraphy boreholes (M. Kanevskiy)

A total of 66 permafrost boreholes were drilled during 21 August to 7 September 2021 to examine the status of permafrost and the protective layer above ice wedges. New boreholes were drilled at the NIRPO site in six polygon centers and 35 troughs and rims at T6, T7, T8, and T9. At the JS and NIRPO sites, boreholes at 12 thermokarst ponds where aquatic vegetation plots were established were drilled (eight at NIRPO T6 and four at the JS).

At the AS, eight permafrost boreholes were redrilled at transects T3 and T5. A summary of borehole data is in Appendix 7, including borehole locations (Table A7.1); cryostratigraphy, moisture and ground ice content (Table A7.2); and thicknesses of frozen protective layers above ice wedges including comparisons with 2015 AS and 2019 JS data (Table A7.3).

3.9 Permafrost temperature boreholes (D.J. Nicolsky)

Eight permafrost temperature monitoring sites were established on NIRPO transects T6, T7, T8, and T9, and near the road on either side of the Spine Road at the CS. Shallow 1-in diameter boreholes (1.5–2.5 m deep) were drilled at each site, and Hobo Onset temperature sensors were then placed at four depths: at the ground surface, 0.5 m and 1.0 m below the ground surface, and at the bottom of the borehole (1.5–2.5 m below the surface).

Sensors record the temperature every four hours, starting three days after installation on 26 August 2022. Figure 39 shows typical setups for installations in wet and moist sites. Temperatures at the bottom of the borehole varied between -2.5 and -4 °C at installation.

3.9.1 Temperature-borehole site descriptions

- T6: Transect T6. High-center polygon, dry end of the moist tundra, vegetation type U3. Maximum depth 2.49 m, temperature at bottom -4 °C. Coordinates: -148.450731, 70.231876.
- T7W: West end of transect T7. Marl site, aquatic tundra, standing water most of the year, vegetation type M4. Maximum depth 2.29 m, temperature at bottom -3.9 °C. Coordinates: -148.446651, 70.230452.

- T7E: Transect 7 east end. Low-center polygon, wet tundra, no standing water at end of season, vegetation type M2. Maximum depth 2.1 m, temperature at the bottom -3 °C. Coordinates: -148.443620, 70.230450.
- T8W: West end of transect T8. No visible troughs or polygons, aquatic tundra, vegetation type M4. Maximum depth 1.5 m (gravel at 1.2 m), temperature at bottom -2.7 °C. Coordinates: -148.461380, 70.230996.
- T8E: East end of transect T8. Flat-center polygon, wet tundra, vegetation type M2. Maximum depth 2.06 m, temperature at the bottom -3.6 °C. Coordinates: -148.457094 70.231716.
- T9: Transect T9. High-center polygon, moist tundra, vegetation type U4. Maximum depth 2.45 m, temperature at the bottom -4.4 °C. Coordinates: -148.455061, 70.232227.
- CS LD (Less Dust): Roadside site, Colleen transect T1, northeast (dusty) side of the road. Maximum depth 2.34 m, temperature at bottom -3.3 °C. Coordinates: -148.471324, 70.223152.
- CS MD (More Dust): Roadside site, Colleen transect T2, southwest (dusted and flooded) side of the road. Maximum depth 2.29 m, temperature at bottom -2.8 °C. Coordinates: -148.471669, 70.222962.

Figure 39. Typical setups of loggers. **a.** A station in a flood prone wet/ aquatic-tundra location where the logger is elevated on a tripod. **b.** Station located in moist-tundra site, where the logger case is located on the ground. (Photos: N. Hasson)

- Bouyoucos, G. J. 1936. Directions for making mechanical analyses of soils by the hydrometer method. Soil Science 42:225–230.
- Brown. 1975. Ecological investigations of the tundra biome in the Prudhoe Bay region, Alaska. Biological Papers of the University of Alaska Nr. 2, 2:240.
- Gardner, W. H. 1986. Water content. Pages 493-495 *in* A. Klute, editor. Methods of soil analysis: part 1 physical and mineralogical methods, 5.1 (2nd Edition). Soil Science Society of America, Madison, Wisconsin, USA. DOI: 10.2136/sssabookser5.1.2ed.c21
- Jorgenson, M. T., M. Kanevskiy, Y. Shur, N. Moskalenko, D. R. N. Brown, K. Wickland, R. Striegl, and J. Koch. 2015. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. Journal of Geophysical Research: Earth Surface 120:2280–2297.
- Kanevskiy, M., Y. Shur, T. Jorgenson, D. R. N. Brown, N. Moskalenko, J. Brown, D. A. Walker, M. K. Raynolds, and M. Buchhorn. 2017. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297:20–42. DOI: 10.1016/j.geomorph.2017.09.001
- Kanevskiy, M., Y. Shur, D. A. Walker, T. Jorgenson, M. K. Raynolds, J. L. Peirce, B. M. Jones, and M. Buchhorn. 2022. The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska, USA. Arctic Science 8:498-530. DOI: 10.1139/as-2021-0024
- Klute, A. editor. 1986. Methods of soil analysis: part 1 physical and mineralogical methods, 5.1 (2nd Edition). Soil Science Society of America, Madison, Wisconsin, USA. DOI: 10.2136/sssabookser5.1.2ed
- Madsen, J. D., R. M. Wersal, and T. E. Woolf. 2007. A new core sampler for estimating biomass of submersed aquatic macrophytes. Journal of Aquatic Plant Management 45:31–34.
- McLean, E. O. 1983. Soil pH and lime requirement. Pages 199–224 in A. L. Page, editor. Methods of soil analysis: part 2 chemical and microbiological properties, 9.2.2 (2nd Edition). Soil Science Society of America, Madison, Wisconsin, USA. DOI: 10.2134/agronmonogr9.2.2ed.c12

- Munsell Color. 1975. Munsell soil color charts. Kollmorgen Corporation, Baltimore, Maryland, USA.
- National Research Council. 2003. Cumulative environmental effects of oil and gas activities on Alaska's North Slope. National Academies Press, Washington, DC, USA. DOI: 10.17226/10639
- Peters, D. B. 1965. Water availability. Pages 279–285 in C. A. Black, editor. Methods of soil analysis: part 1 physical and mineralogical methods, 9.1. American Society of Agronomy, Madison, Wisconsin, USA. DOI: 10.2134/agronmonogr9.1.c19
- Raynolds, M. K., A. L. Breen, D. A. Walker, R. Elven, R. Belland, N. Konstantinova, H. Kristinsson, and S. Hennekens. 2013. The pan-arctic species list (PASL). Pages 92–95 *in* D. A. Walker, A. L. Breen, M. K. Raynolds, and M. D. Walker, editors. Arctic Vegetation Archive Workshop: Krakow, Poland, 14-16 April 2013. CAFF Proceedings Series Report Nr. 10. Conservation of Arctic Flora and Fauna, Akureyri, Iceland.
- Raynolds, M. K., D. A. Walker, K. J. Ambrosius, J. Brown, K. R. Everett, M. Kanevskiy, G. P. Kofinas, V. E. Romanovsky, Y. Shur, and P. J. Webber. 2014. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology 20:1211–1224.
- Schindlbacher, A., S. Zechmeister-Boltenstern, G. Glatzel, and R. Jandl. 2007. Winter soil respiration from an Austrian mountain forest. Journal of Agricultural and Forest Meteorology 146:205–215. DOI: 10.1016/j.agrformet.2007.06.001
- Truett, J. E., and S. R. Johnson, editors. 2000. The natural history of an arctic oilfield development and biota. Academic Press, San Diego, California, USA.
- Walker, D. A. 1985. Vegetation and environmental gradients of the Prudhoe Bay region, Alaska. CRREL Report 85-14, p. 240. U.S. Army Cold Regions Research and Engineering laboratory, Hanover, New Hampshire, USA.
- Walker, D. A., M. Buchhorn, M. Kanevskiy, G. V. Matyshak, M. K. Raynolds, Y. L. Shur, and J. L. Peirce. 2015. Infrastructure-thermokarst-soil-vegetation interactions at Lake Colleen Site A, Prudhoe Bay, Alaska. AGC Data Report 15-01. Alaska Geobota-

ny Center, Fairbanks, Alaska, USA. DOI: 10.18739/ A2M61BQ8M

- Walker, D. A., M. Buchhorn, M. Kanevskiy, M. K. Raynolds, Y. L. Shur, and L. M. Wirth. 2016. Road effects at Airport study site, Prudhoe Bay, Alaska, summer 2015. AGC Data Report 16-01. Alaska Geobotany Center, Fairbanks, Alaska, USA. DOI: 10.18739/ A2VM42Z20
- Walker, D. A., K. R. Everett, P. J. Webber, and J. Brown. 1980. Geobotanical Atlas of the Prudhoe Bay region, Alaska. CRREL Report 80-14, p. 69. U.S. Army Cold Regions Research and Engineering laboratory, Hanover, New Hampshire, USA.
- Walker, D. A., M. Kanevskiy, M. K. Raynolds, and J. L. Peirce. 2018. 2016 ArcSEES data report: snow, thaw, temperature and permafrost borehole data from the Colleen & Airport sites, Prudhoe Bay, Alaska, and Quintillion fiber optic cable impacts, North Slope, Alaska. AGC Data Report 18-01. Alaska Geobotany Center, Fairbanks, Alaska, USA. DOI: 10.18739/A28K74X6T
- Walker, D. A., M. K. Raynolds, M. Buchhorn, and L. M. Wirth. 2014. Landscape and permafrost changes in

the Prudhoe Bay Oilfield, Alaska. AGC 14-01. Alaska Geobotany Center, Fairbanks, Alaska, USA. DOI: 10.18739/A24X54H5D

- Walker, D. A., M. K. Raynolds, M. Z. Kanevskiy, Y. S. Shur,
 V. E. Romanovsky, B. M. Jones, M. Buchhorn, M.
 T. Jorgenson, J. Šibík, A. L. Breen, A. Kade, E. Watson-Cook, H. Bergstedt, A. K. Liljedahl, R. P. Daanen,
 B. Connor, D. Nicolsky, and J. L. Peirce. 2022. Cumulative impacts of a gravel road and climate change in an ice-wedge polygon landscape, Prudhoe Bay,
 AK. Arctic Science 8:1040-1066. DOI: 10.1139/as-2021-0014.
- Walker, D. A., P. J. Webber, E. F. Binnian, K. R. Everett, N. D. Lederer, E. A. Nordstrand, and M. D. Walker. 1987. Cumulative impacts of oil fields on northern Alaskan landscapes. Science 238:757–761. DOI: 10.1126/science.238.4828.757
- Westhoff, V., and E. van der Maarel. 1978. The Braun-Blanquet approach. Pages 287–399 in R. H. Whittaker, editor. Classification of Plant Communities. Handbook of Vegetation Science. Junk, The Hague, Netherlands. DOI: 10.1007/978-94-009-9183-5

APPENDICES Data Tables and Photos

LIST OF APPENDICES

Time series of aerial images for Colleen and Airport sites (1949-2015)	31
2020 Field data	35
2021 Transect data	46
2021 NIRPO terrestrial plot data and photos	62
2021 Aquatic plot data and photos	94
2021 Basal peat sampling	.113
2021 Permafrost borehole data	.114
	Time series of aerial images for Colleen and Airport sites (1949-2015) 2020 Field data 2021 Transect data 2021 NIRPO terrestrial plot data and photos 2021 Aquatic plot data and photos 2021 Basal peat sampling 2021 Permafrost borehole data

BPXA, LIDAR classified highest hit (2014-08) 2014 BPXA, 0.75 foot res-olution digital or-thophoto (2014-08) 014 3PXA, 0.75 foot res-olution digital or-thophoto (2013) 2013 BPXA, 1.0 foot reso-lution digital ortho-photo (2012-07-11) 012 BPXA, 1.0 ft resolu-tion digital ortho-photo (2011-07-06) BPXA, 1.0 ft resolu-tion digital ortho-photo (2010) 2010 BPXA, 1.0 foot reso-lution digital ortho-photo (2009-07-14) 2009 BPXA, 1.0 foot reso-lution digital ortho-photo (2008-07-03) 2008 BPXA, 1.0 ft resolu-tion digital ortho-photo (2007-07-04) 200 Quikbird 2, 0.6m resolution, b&w (2006-08-15) 2006 BPXA, digital orthophoto (2005-08-09) 2005 BPXA, 2.0 ft resolu-tion digital ortho-photo (2004-07-26) 100 BPXA, 1:18000 scan, color (2003-07-20) 2003 BPXA, 2.0 ft resolu-tion digital ortho-photo (2002-07-17) 2002

Figure A1.1 (continued)

Figure A1.2 (continued)

APPENDIX 2020 Field Data

Table A2.1. C14 dating by accelerator mass spectrometry (AMS) of basal peat samples collected from bottom of the peat layer at BM-1, BP-1, BP-3, and BP-4, NIRPO 2020 reconnaissance area, Prud-hoe Bay, Alaska, August 17, 2020. NOSAMS batch: Batch number at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAM) facility where dating was done.

Description	moss and grass, rootles, no obvious aquatics	mostly rootles, some grass, some	mostly rootles, some grass, some	moss and grass, rootles, no obvious aquatics	moss and grass with lots of rootles no obvious aquatics	moss and grass with lots of rootles no obvious aquatics	mostly moss, some grass and rootlets, no obvi- ous aquatics	detrital grass with very little moss, no obvious aquatics	moss and grass with lots of rootles no obvious aquatics
Upper bound (BP) (years)	278	429	309	516	649	897	671		1546
Lower bound (BP) (years)	8	305	156	494	555	735	572		1418
Error (+/- years)	15	15	15	15	15	15	15		15
Age uncalibrated (years)	145	300	250	445	620	068	069	>Modern	1,640
Feature event	basal peat	basal peat	basal peat	basal peat	basal peat	basal peat	basal peat	basal peat	basal peat
Longitude (WGS84 DD)	-148.460	-148.460	-148.460	-148.460	-148.462	-148.462	-148.467	-148.454	-148.446
Latitude (WGS84 DD)	70.240	70.240	70.240	70.240	70.236	70.236	70.234	70.237	70.236
Material category	grass	moss	grass	moss	grass	moss	moss	grass stems	moss
Sample depth (cm)	13	13	17	17	24	24	23	14	44
NOSAMS batch	2	2	2	2	2	2	2	2	2
Sample basin ID	BP-NIRPO-W-grass	BP-NIRPO-W-moss	BP-NIRPO-W-grass	BP-NIRPO-W-moss	BP1-grass, 24-26, 24-26	BP1-moss, 24-26, 24-26	BP2, 23-25	BP3, 14-15	BP4, 44-45

Table A2.2. Cryostratigraphy, moisture and ground-ice content of soil sampled from permafrost boreholes, Airport and Colleen Sites, Prudhoe Bay, Alaska, August 16-18, 2020. **Polgyon feature:** Center (C), rim (R), trough (T). **Cryostratigraphic unit:** Code descriptions are listed below the table.

Borehole ID	Polygon feature	Sample depth (cm)	Cryostrati- graphic unit (see notes)	Soil texture	Gravimetric mois- ture content, GMC (% wt)	Volumetric mois- ture content, VMC (% vol)	Excess ice con- tent, EIC (% vol)
	С	59-68	ALF-TL	sandy silt	81	67.5	13.1
T4-0	R	69-83	IL	silt with peat inclusions	335	89.5	71.5
	Т	88-96	IL	silt with peat inclusions	159	80.3	38.5
	Т	103-112	SP	silt with peat inclusions	115	74.6	23.7
	Т	50-56	TL	silty sand with peat inclusions	80	67.2	5.48
	Т	69-75	IL-PD	silt with peat inclusions	151	79.4	33.2
T4 500	Т	90-95	IL-PD	silt with peat inclusions	152	77.2	10.5
14-500	Т	105-116	SP	silt, sandy silt, sandy peat	189	82.9	42.3
	Т	122-131	SP	silt, sandy silt, sandy peat	156	79.9	33.7
	Т	139-148	SP	silt, sandy silt, sandy peat	180	80.0	20.9
T4-600	Т	59-67	IL-PD	peat, sandy silt	152	77.1	0.63
T1 FT 1/20	Т	59-67	ALF-TL	silty sand	68	63.5	0.62
11-51-1/20	Т	73-81	IL-PD	silty sand with peat inclusions	183	80.2	24.0
T1-10T-1/20	Т	54-63	TL	silty sand with peat inclusions	95	70.9	5.32
T1-10T-2/20	Т	53-61	IL-PD	sandy silt with peat inclusions	145	76.3	0.6
T1-25T-1/20	Т	40-49	ALF-TL	organic-rich silty sand	130	74.3	0.28
T1-50T-2/20	Т	37-42	ALF-TL	mostly organic	193	81.1	16.3
T1-50T-5/20	Т	45-49	ALF-TL	mostly organic	126	73.7	13.9
T1-50T-7/20	Т	41-45	ALF-TL	mostly organic	166	78.7	2.2
T1-50T-9/20	Т	58-63	ALF-TL	peat, mineral	123	73.2	3.82

Notes: Cryostratigraphic unit: AL – active layer; ALF – frozen active layer (ice-poor; often with dry friable soil horizons closer to the base of the AL); TL – transient layer (relatively ice-poor, mainly with reticulate and/or braided cryostructures); ALF-TL – undifferentiated AL-TL (no distinctive boundary between AL and TL); IL – intermediate layer, usually ice rich (thick belts, mainly ataxitic cryostructure); IL-PD – intermediate layer, poorly developed (relatively ice-poor, no well-developed belts); QSP – quasi-syngenetic permafrost (buried ILs, usually ice-rich); SP – syngenetic permafrost (thin belts, micro-cryostructures).

trough	st-cave	adation	
Polygon	ermokar	ial degro	
orelief:	(IVI), the	UD), init	
ka. Micr	edge ice	wedge (
3ay, Alas	re ice: w	isturbed	
rudhoe	o massiv	us: Und	Ĵ).
isect 1), F	Depth t	dge stat	oed (IL-P
Site (Trar	tructure.	in ice we	y develo
Colleen	of cryos	Change	ier, poorl
20 at the	analysis	(IL, PL3).	diate lay
4 with 20	based on	ate layer	: Interme
and 2014	te layer t	termedic	. Results
son Site	ermedia	(TL) + in	5A1, SA2)
neJorgen	of the int	ent layer	zation (5
019 at th	ole: Top (+ transi	ed stabili
12 with 2	frost tal	yer (ALF)	advance
2011-20). Perma	active lay	'SI1, SI2),
esults in	ess (ALT)	s frozen i	lization (
drilling r	er thickn) include	tial stabi
orehole	Ictive lay	ayer (PL1	(D2), ini
rison of b	depth: A	tective Lo	radation
. Compa	o). Thaw	ozen pro	nced deg
ble A2.3), pond (I	; (TCI). Fr	1), advar
Та	E	ice	Ð

			Borehole	Water	Thaw	Perma-	Inter- mediate	Denth to	Frozen nrotective	Change in	
Borehole		Micro-	depth	depth	depth	frost table	layer (PL3)	massive	layer (PL2)	ice wedge	
⊒	Date	relier	(cm)	(cm)	(ALI) (CM)	(cm)	(cm)	Ice (cm)	(cm)	status	Notes
COLLEEN SITE, TRA	NSECT 1 REDRILLIN	IG, 2014 & 2	020								
Undisturbed wedge	es (UD), 2014										
T1-10T-2	8/7/2014	F	95	0	56	56	ß	61 (WI)	2	an	
Т1-10Т-2/20	8/18/2020	F	63	'n	53	56	9	62 (WI)	6	SI2	IL-PD. Some degradation and then stabilization
T1-50T-1	8/7/2014	F	118	0	56	65	5	73 (WI)	18	an	
Т1-50Т-1/20	8/18/2020	⊢	·	0	57					,	Did not drill. Looks stable, not big changes
Degradation initial	(D1), 2014										
T1-5T-1	8/7/2014	F	98	0	51	60	0	60 (WI)	6	D1	
T1-5T-1/20	8/18/2020	F	87	0	58	72	13	85 (WI)	27	SI1	
T1-10T-1	8/7/2014	F	90	-	58	58	0	58 (WI)	0	D1	
Т1-10Т-1/20	8/18/2020	⊢	80	S	48	61	2	63	15	SI2	IL-PD. Some degradation and then stabilization
T1-100T-1	8/7/2014	F	75	0	44	45	0	45 (WI)	1	D1	
T1-100T-1/20	8/18/2020	т	63	32	50	50	0	50 (WI)	0	D2	
Degradation advan	ced (D2), 2014										
T1-25T-1	8/6/2014	F	75	15	45	47	0	47 (WI)	2	D2	
T1-25T-1/20	8/18/2020	Т	62	15	40	49	0	49 (WI)	6	D2 or SI2	Probably some stabilization, still vulnerable
T1-50T-7	8/14/2014	F	81	30	43	43	0	43 (WI)	0	D2	
Т1-50Т-7/20	8/18/2020	Т	53	39	41	45	0	45 (WI)	4	D2 or SI2	Probably some stabilization, still vulnerable
T1-50-8	8/14/2014	F	51	49	41	44	0	44 (WI)	3	D2	
T1-50-8/20	8/18/2020	Т	ı	50	41	I	I	I	I		Did not drill.
T1-50T-9	8/14/2014	F	88	31	51	56	0	56 (WI)	5	D2	
Т1-50Т-9/20	8/18/2020	Т	70	30	58	63	0	63 (WI)	5	D2 or SI2	Probably some stabilization, still vulnerable
Stabilization initial	(SI1), 2014										
T1-50T-2	8/13/2014	F	86	0	28	36	0	36 (WI)	8	SI1	
Т1-50Т-2/20	8/18/2020	т	62	0	37	42	12	54 (TCI+WI)	17?	No big changes	42-54 soil/ice boundary. Probably some stabilization
T1-50T-5	8/13/2014	F	81	0	35	46	0	46 (WI)	11	SI1	
Т1-50Т-5/20	8/18/2020	Т	58	0	45	49	0	49 (WI)	4	No big changes	
Т1-200Т-1	8/8/2014	F	298	0	35	42	0	42 (WI+TCI)	7	SI1	
Т1-200Т-2	8/9/2014	F	158	0	27	34	0	34 (WI+TCI)	7	SI1	
Т1-200Т-3	8/9/2014	F	155	0	30	37	0	37 (TCI+WI)	7	SI1	
T1-200T/20	8/18/2020	⊢	I	36	33	'	'	·	'	D2	Didn't drill, deep water, significant degradation
Stabilization initial	(SI2), 2014										7 boreholes evaluated in 2014-2016. None redrilled.
2014 Mean (n=9)		F	85	8.6	46	50	0.6		5		
2020 Mean (n=9)		т	66	14	48	54	3.7		10		

(continued)	
ole A2.3	
Tab	

		Notes				Stabilization since 2011	Massive ice – TCI (no WI)	WI, no TCI. Significant stabilization since 2011		Stabilization since 2011		Deep pond; some degradation since 2011	Deeper pond; some degradation, probably some	stabilization	All cores obtained in June/July, so TL and IL not precise	Depths to massive ice increased significantly			
;	Change in ice wedge	status																	
Frozen	protective laver (PL2)	(cm)		41	30	25	45	58	40	32	32	15	[4]	18					
	Depth to massive	ice (cm)		50	49	58	48	98	51	66	45	50	55	60	50	66	50	59	
Inter-	mediate laver (PL3)	(cm)		۱	0	4?	0	10?	-	ż	0	0	2	3	0.8	3.4	1.0	1.8	
	Perma- frost table	(cm)		49	49	54?	48	88?	50	66?	45	50	53	57?					
ī	Thaw denth	(ALT) (cm)		6	19	33	ε	40	11	34	13	35	[51]	42		37		36	
:	Water denth	(cm)		55	54	65	48	42	56	49	0	65	0.5	20	32	48	28	50	
	Borehole denth	(cm)	2019	72	49	06	105	117	89	93	65	85	83	82	83	93	77	88	
	Micro-	relief	2011-12 & 2	Ь	4	Р	٩	Ρ	٩	Р	Ч	Ρ	Ч	Ρ	Ч	Ρ	Ч	٩	
		Date	E, POND REDRILLING,	6/12/2011	6/12/2011	7/11/2019	6/12/2011	7/11/2019	6/12/2011	7/11/2019	6/11/2011	7/11/2019	7/24/2012	7/13/2019	A1-B excl., n=5)	txcl., n=5)	A2, DA1-B excl., n=4)	\1-B excl., n=4)	
	Borehole	Q	JORGENSON SITE	DA1	DA1-B	DA1/19 (21A-14)	DA2	DA2/19 (21A-08)	DA3	DA3/19 (21A-06)	SI3	SI3/19 (21A-10)	SI5	SI5/19 (21-A11)	2011-2012 mean (D	2019 mean (DA1-B e	2011-2012 mean (D	2019 mean (DA2, D#	

Table A2.4. Water depth, thaw depth, and polygon features measured at 1-meter intervals along the NIRPO-1 transect in the NIRPO 2020 reconnaissance area, Prudhoe Bay, Alaska, 17 August 2020. Measurements were taken using a small-diameter calibrated metal thaw probes and wooden meter sticks. **Microrelief**: Polygon feature (trough, center, rim), or other note.

Distance	Water depth	Thaw depth	Misservelief
(m)	(c m)	(CM)	MICroreller
0	0	49	center
1	0	50	center
2	0	49	center
3	0	48	center
4	0	50	center
5	0	48	center
6	0	48	center
7	0	41	center
8	0	49	center
9	0	40	center
10	0	54	center
11	19	50	trough
12	39	51	trough
13	46	53	trough
14	60	34	trough
15	51	51	trough
16	37	57	trough
17	18	57	trough
18	0	51	center
19	0	46	center
20	0	46	center
21	0	44	center
22	0	49	center
23	0	44	center
24	0	49	center
25	0	45	center
26	0	44	center
27	0	34	inter hummock
28	0	40	center
29	0	35	rim
30	0	44	rim
31	0	44	rim
37	15	44	trough
33	25	48	trough
34	39	38	trough
35	38	31	trough
36	16	52	trough
37	17	41	trough
38	0	40	rim
30	0	41	rim
40	0	51	rim
40	0	/3	rim
42	0	45	center
42	0	45	center
43	0	41	center
44	0	42	center
45	0	39	center
40	0	39	center
47	0	44	center
48	0	42	center
49	0	46	center
50	0	44	center
51	0	45	center
52	0	49	center
53	0	46	center
54	0	47	center
55	0	44	center

Distance (m)	Water depth (cm)	Thaw depth (cm)	Microrelief
56	0	43	center
57	0	30	trough
58	0	26	trough
59	0	35	trough
60	0	34	trough
61	0	35	trough
62	0	35	trough
63	0	25	trough
64	2	31	trough
65	0	48	trough
66	3	50	wet
67	0	60	rim
68	0	67	rim
69	0	45	center
70	0	36	center
71	0	37	center
72	0	38	center
73	0	39	center
74	0	40	center
75	0	41	center
76	0	40	center
77	0	40	center
78	0	36	center
79	0	34	center
80	0	41	center
81	0	34	trough
82	0	45	center
83	0	44	center
84	0	35	center
85	0	37	center
86	0	43	center
87	0	40	center
88	0	40	center
89	0	42	center
90	0	43	center
91	0	45	center
92	0	55	center
93	17	45	trough
94	30	41	trough
95	23	51	trough
96	2	58	trough
97	0	59	rim
98	0	35	center
99	0	31	center
100	0	39	center
Mean (cm)	4.9	43.4	
Std deviation	12.5	7.4	
Std error	1.24	0.74	

Table A2.5. Water depth, thaw depth, and polygon features measured at 1-meter intervals along three transects (BM-1, BP-1, and BP-2) in the NIRPO 2020 Reconnaissance Area, Prudhoe Bay, Alaska, 17 August 2020. Measurements were taken using a small-diameter calibrated metal thaw probes and wooden meter sticks. Field notes may include microrelief (e.g. polygon trough, center, rim), vegetation type codes, and presence of water or gravel. **Field Notes**: See Appendix 4, Tables A4.7 for vegetation type codes. Most other notes describe polygon feature.

	Bas	sin margin 1	(BM-1)		Basal peat 1	(BP-1)	B	asal peat 2 (Bl	P-2)
	Water	Thaw							
Distance	depth	depth	Field weter	Water	Thaw	Field water	Water	Thaw	
(m) 0	(cm)	(Cm)	Field notes	depth (cm)	depth (cm)	Field hotes	depth (cm)	depth (cm)	Field Notes
0	0	35	04	0	40	-	4	30	-
	0	34	04	1	42	-	0	44	-
2	0	35	04	0	40	-	0	44	-
3	0	35	04	0	39	-	0	43	-
4	0	31	04	0	40	-	0	43	-
5	0	31	04	0	34	rim	0	40	-
6	0	38	04	4	32	trough	0	39	rim
7	0	34		0	44	-	0	35	rim
8	0	43	rim	0	36	-	0	36	trough, M2
9	0	37	trough	0	36	-	0	37	-
10	0	41	rim	0	38	-	0	40	-
11	0	33	U4	0	40	-	0	41	-
12	0	35	U4	0	39	-	0	41	-
13	0	42	M2	0	40	-	0	45	-
14	0	46	M2	0	40	-	0	44	-
15	0	45	M2	0	43	-	0	44	-
16	0	47	M2	0	39	-	0	44	-
17	0	44	M2	0	43	-	0	41	-
18	0	48	M2	1	41	-	0	40	-
19	0	44	M2	1	39	-	0	41	-
20	0	41	M9	0	36	-	0	39	-
21	0	33	rim	0	38	rim	0	40	-
22	0	34	rim	7	32	trough	0	42	-
23	0	30	U4, trough	1	29	-	0	41	-
24	0	34	rim	0	36	rim	0	40	-
25	0	35	rim	0	39	-	0	45	-
26	0	33	rim	0	38	-	0	45	-
27	0	35	rim	0	39	-	0	45	-
28	0	37	rim	0	38	-	0	44	-
29	0	37	rim	0	39	-	0	45	-
30	0	37	rim	0	44	-	0	40	-
31	0	36	rim	3	37	-	0	35	rim, U4
32	0	41	rim	0	40	-	0	35	trough, M2
33	7	29	trough	0	36	-	0	40	-
34	0	39	rim	0	36	-	0	39	-
35	0	34	margin rim	0	40	rim	0	40	-
36	0	38	U4	0	29	trough	0	41	-
37	0	37	U4	0	29	rim; lots of moss	0	43	-
38	0	39	U4	0	29	lots of moss (tomnit)	0	40	-
39	0	35	U4	0	35	edge of basin	0	40	-
40	0	36	U4	0	40	basin	0	40	-
Mean (cm)	0.2	37.3		0.4	37.7		0.10	40.90	
Std deviation	1.1	4.7		1.3	4.0		0.62	2.93	
Std error	0.17	0.74		0.21	0.62		0.10	0.46	

Table A2.6. Water depth, thaw depth, and polygon features measured at 1-meter intervals along a 250-m transect at the Jorgenson site, Prud-
hoe Bay, Alaska, 15 August 2020. Measurements were taken using a small-diameter calibrated metal thaw probes and wooden meter sticks.
Microrelief: Polygon feature (trough, center, rim).

Distance (m)	Water depth (cm)	Thaw depth (cm)	Micro- relief	Distance (m)	Water depth (cm)	Thaw depth (cm)	Micro- relief	Distance (m)	Water depth (cm)	Thaw depth (cm)	Micro- relief
0	0	46	-	55	0	52	-	110	0	40	-
1	0	45	-	56	0	52	-	111	0	56	-
2	0	56	-	57	0	42	-	112	19	52	trough
3	0	40	-	58	0	59	-	113	12	48	trough
4	0	50	-	59	25	35	trough	114	0	46	-
5	0	43	-	60	26	39	trough	115	0	51	-
6	0	44	-	61	24	33	trough	116	0	54	-
7	0	46	-	62	0	56	-	117	0	54	-
8	0	48	-	63	0	44	-	118	0	58	-
9	0	47	-	64	0	54	-	119	0	56	-
10	0	50	-	65	0	53	-	120	0	58	-
11	0	46	-	66	0	52	-	121	0	55	-
12	0	49	-	67	0	52	-	122	0	49.0	-
13	0	50	-	68	0	56	-	123	0	45	-
14	0	40	-	69	0	53	-	124	0	47.0	-
15	0	54	-	70	0	55	-	125	0	51.0	trough
16	0	50	-	71	0	57	-	126	0	50	-
17	0	54	-	72	37	38	trough	127	0	49	-
18	0	49	-	73	45	42	trough	128	0	51	-
19	0	40	-	74	39	45	-	129	0	42	-
20	0	48	-	75	0	71	-	130	0	50	-
21	0	36	-	76	0	48	-	131	0	54	-
22	0	34	-	77	0	55	-	132	0	56	-
23	0	48	-	78	0	52	-	133	0	55	-
24	0	60	-	79	0	47	-	134	0	51	-
25	22	38	trough	80	0	49	-	135	0	60	-
26	25	38	trough	81	0	43	-	136	0	49	-
27	26	38	trough	82	0	44	-	137	0	55	-
28	7	52	-	83	0	38	-	138	0	34	trough
29	0	45	-	84	0	51	-	139	0	54	
30	0	49	-	85	20	40	trough	140	0	46	-
31	0	52	-	86	0	59	-	141	0	47	-
32	0	50	-	87	0	46	-	142	0	51	-
33	0	52	-	88	0	48	-	143	0	62	-
34	0	40	-	89	0	50	-	144	17	61	trough
35	0	35	-	90	0	55	-	145	51	53	trough
36	0	35	-	91	0	58	-	146	63	51	trough
37	0	35	-	92	0	50	-	147	55	54	trough
38	0	49	-	93	0	50	-	148	25	60	trough
39	0	38	-	94	0	50	-	149	0	61	-
40	0	40	-	95	25	50	trough	150	0	54	-
41	0	41	-	96	51	54	trough	151	0	53	-
42	0	49	-	97	58	45	trough	152	0	51	-
43	0	34	-	98	19	70	trough	153	0	54	-
44	0	45	-	99	5	55	-	154	0	52	-
45	0	37	-	100	0	63	-	155	0	54	-
46	0	42	-	101	18	45	trough	156	0	54	-
47	0	50	-	102	22	47	trough	157	0	54	-
48	0	50	-	103	23	50	trough	158	0	58	-
49	0	55	-	104	29	43	trough	159	0	55	-
50	0	58	-	105	29	43	trough	160	0	57	-
51	0	54	-	106	23	45	trough	161	0	54	-
52	0	57	-	107	10	50	trough	162	0	48	-
53	0	55	-	108	0	55	-	163	0	55	-
54	0	55	-	109	0	45		164	0	62	-

Table A2.6 (continued). Jorgenson site 250-m transect.

Distance (m)	Water depth (cm)	Thaw depth (cm)	Micro- relief
165	10	50	trough
165	0	50	trough
167	4	50	trough
169	7	10	trough
160	/	49 51	trough
170	9	51	trough
170	10	44	trough
171	0	60	trougn
172	0	46	-
173	0	52	-
174	0	53	-
175	0	50	-
176	0	52	-
177	0	49	-
178	0	52	-
179	0	50	-
180	0	53	-
181	0	53	-
182	0	55	-
183	0	52	-
184	0	70	-
185	36	53	trough
186	49	51	trough
187	40	54	trough
188	16	53	trough
189	0	50	-
190	0	42	-
190	0	48	-
197	0	52	-
192	0	56	-
195	0	56	-
194	0	50	-
195	0	50	-
196	0	51	-
197	0	51	-
198	0	53	-
199	0	53	-
200	0	54	-
201	0	47	-
202	0	46	-
203	0	46	-
204	0	50	-
205	0	52	-
206	0	50	-
207	0	53	-
208	0	52	-
209	0	55	-
210	0	54	-
211	0	46	-
212	0	42	-
213	0	41	-
214	0	46	-
215	0	50	-
216	8	48	trouah
217	21	50	trough
219	51	40	trough
210	21	40	trough
219	31	53	trough

Distance (m)	Water depth (cm)	Thaw depth (cm)	Micro- relief
220	0	61	-
221	0	47	-
222	0	42	-
223	0	41	-
224	0	46	-
225	0	46	-
226	0	49	-
227	0	51	-
228	0	49	-
229	0	52	-
230	0	44	-
231	0	40	-
232	0	48	-
233	0	41	-
234	0	53	-
235	0	51	-
236	0	52	-
237	0	53	-
238	0	54	-
239	0	52	-
240	0	53	-
241	0	55	-
242	0	49	-
243	0	45	-
244	0	49	-
245	25	55	trough
246	58	45	trough
247	56	49	trough
248	28	57	trough
249	23	41	trough
250	10	33	trough
Mean (cm)	5.4	49.7	
Std devia- tion	12.9	6.6	
Std error	0.82	0.42	

020.	
ust 2	
Aug	
, 15,	
aska	
y, Al	
e Ba	
idhc	
e, Pru	
n site	
ollee	
ne Co	
at tł	
d T2	
1 an	
cts T	
anse	
ng tr	
alor	
rvals	
inte	
neter	
t 1-n	
ed a	
asur	
h me	
lepti	
aw o	
nd th	
th a	
r dep	
Vatei	
.7. V	
e A2	
Tabl	

	Twee	ct 1 (T1)	Twee	(T) (T)		Tweedo	+ 1 (T1)	Terrar	+ 7 (T)		Two	+ 1 (T1)	Twose	(CT) C
Distance		i i			Distance					Distance				
rrom road (m)	water depth (cm)	l naw depth (cm)	water depth (cm)	l naw depth (cm)	trom road (m)	water depth (cm)	l naw depth (cm)	water depth (cm)	lnaw depth (cm)	trom road (m)	water depth (cm)	l naw depth (cm)	water depth (cm)	ı naw depth (cm)
0	0	60	,		41	0	55	28	49	82	0	53	0	46
1	0	45	0	65	42	0	47	25	54	83	0	47	0	64
2	0	105	0	69	43	0	46	36	45	84	0	47	10	86
m	0	77	0	64	44	0	49	39	41	85	0	44	45	55
4	0	60	0	65	45	0	49	45	44	86	0	44	64	38
5	0	60	0	66	46	0	59	50	33	87	0	43	55	43
9	0	61	0	68	47	0	44	45	36	88	0	43	42	55
7	0	61	6	51	48	0	45	40	38	89	0	42	36	58
8	0	59	0	60	49	0	45	16	56	06	0	51	24	71
6	0	69	0	53	50	0	49	0	45	91	0	55	18	72
10	0	68	0	59	51	0	45	0	42	92	0	46	6	67
11	0	64	0	57	52	0	54	0	54	93	19	46	21	71
12	0	65	0	58	53	0	53	0	55	94	37	32	0	67
13	0	64	0	53	54	0	55	0	57	95	26	42	0	47
14	0	65	0	56	55	0	55	0	53	96	25	40	0	50
15	0	64	13	66	56	0	57	0	55	97	0	61	0	55
16	0	65	39	71	57	0	53	0	48	98	0	60	0	52
17	0	65	71	58	58	0	50	0	53	66	0	50	0	51
18	0	64	76	55	59	0	44	0	54	100	0	45	0	53
19	0	64	61	61	60	0	55	0	56	105	0	64	0	63
20	0	65	37	62	61	0	50	0	53	110	0	44	0	68
21	0	61	7	67	62	0	55	0	44	115	0	47	0	47
22	0	55	0	53	63	0	59	0	45	120	0	48	0	65
23	0	60	0	53	64	0	59	0	45	125	0	65	0	78
24	0	59	0	57	65	0	58	0	42	130	0	51	0	53
25	2	63	0	57	66	0	50	0	41	135	0	54	16	50
26	27	48	0	57	67	0	49	0	50	140	0	54	0	48
27	25	49	0	58	68	0	46	0	63	145	0	43	0	47
28	25	40	0	56	69	0	42	7	51	150	0	51	0	54
29	25	30	0	56	70	0	40	6	49	155	0	45	0	57
30		63	0	54	71	6	57	4	56	160	0	50	0	56
31	0	45	0	47	72	44	60	0	54	165	27	43	0	58
32	0	63	0	51	73	49	60	0	55	170	0	35	26	59
33	0	58	0	51	74	54	66	0	50	175	0	50	0	48
34	0	58	0	53	75	60	59	0	45	180	6	50	0	41
35	0	45	ĸ	57	76	59	44	0	42	185	0	49	0	53
36	0	47	25	57	77	4	5	0	47	190	0	48	0	51
37		44	39	50	78	0	50	0	45	195	0	43	0	50
38	17	42	26	56	79	0	35	0	47	200	10	47	0	48
39	22	47	24	56	80	0	49	0	41	Mean (cm)	4.8	52.3	9.7	54.1
40		55	25	53	81	0	49	0	42	Std devia-	12.6	10.8	17.8	8.9
										Std error	1.14	0.98	1.66	0.82

Table A2.8. Water depth and thaw depth measured at 1-meter intervals along three transects (T3, T4 and T5) at the Airport Site, Prudhoe Bay, Alaska, 16 August 2020. Measurements were taken using a small-diameter calibrated metal thaw probes and wooden meter sticks.

	,	(ar) a .	ļ	(<u> </u>	ļ	(1 <u>4</u>) 1 .		,	(c.1) c .	,	(<u>+</u>	,	i ki u
Distance	Iranse	CT 3 (13)	Iransec	ct 4 (14)	Iranse	(cl) cl)	Distance	Iransed	13(13)	Iransec	[4(14)	Iransed	(୯၂) ୯၂
from road (m)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)	from road (m)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)
0			34	>106			38	0	49	94	51	0	49
1		1	14	94	,	1	39	0	54	49	67	20	40
2		1	-	74	,	1	40	0	57	45	57	0	51
3	I	I	10	59	,	ı	41	0	50	39	46	0	59
4	0	65	19	57	ı	I	42	0	47	39	51	0	55
5	0	57	21	59	ı	I	43	0	48	23	63	0	59
6	0	59	21	67	1	I	44	0	51	35	54	0	59
7	0	50	20	81		ı	45	0	60	37	59	0	62
8	0	45	27	63		ı	46	0	43	48	50	0	63
6	0	44	23	56		ı	47	0	81	4	60	0	60
10	0	61	18	60	,	I	48	0	55	70	52	0	55
11	0	49	19	61	ı	I	49	1	56	52	70	0	49
12	0	49	20	61		I	50	0	66	40	60	0	46
13	0	58	29	64	ı	I	51	0	61	32	53	0	44
14	0	55	40	71		I	52	0	53	23	59	0	41
15	0	55	29	81	ı	I	53	0	50	16	59	0	45
16	0	63	18	96	'	ı	54	0	56	20	49	0	45
17	0	53	18	105		'	55	0	59	17	48	0	45
18	0	57	25	104		'	56	0	61	15	50	0	45
19	0	57	26	>130	'	ı	57	0	60	17	48	0	47
20	0	59	50	>50	0	71	58	0	60	17	47	0	42
21	0	64	59	>113	12	55	59	0	58	14	54	0	46
22	0	58	40	>116	18	50	60	0	63	18	46	0	49
23	0	57	25	120	21	47	61	0	56	17	46	0	49
24	0	57	25	111	31	36	62	0	53	14	46	0	52
25	0	58	30	117	0	61	63	0	56	2	52	0	59
26	0	49	39	113	0	53	64	0	51	14	42	0	59
27	0	49	40	110	0	54	65	0	44	17	38	0	60
28	0	48	61	>104	0	53	66	0	42	13	45	0	59
29	0	51	71	ı	0	64	67	0	51	5	55	0	53
30	0	49	65	ı	0	60	68	0	77	5	53	0	42
31	0	51	54	101	0	64	69	1	51	17	38	0	53
32	0	56	45	96	0	65	70	5	52	13	45	35	42
33	0	69	47	71	0	50	71	0	44	16	4	41	48
34	0	38	42	82	0	45	72	0	79	22	39	31	50
35	0	49	60	73	0	40	73	0	48	20	48	0	55
36	0	52	85	64	0	49	74	0	55	22	42	0	50
37	0	57	06	69	0	52	75	0	61	10	54	0	51

Table A2.8 (continued). Airport site, transects T3, T4 and T5.

Distance	Transeo	:t 3 (T3)	Transeo	:t 4 (T4)	Transeo	:t 5 (T5)
from road (m)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)	Water depth (cm)	Thaw depth (cm)
76	0	59	12	44	0	54
77	0	55	10	46	0	49
78	0	56	10	49	0	51
79	0	56	19	47	0	53
80	0	59	20	57	0	51
81	0	55	13	72	0	52
82	0	52	12	73	0	52
83	0	69	13	76	0	50
84	0	64	12	77	16	47
85	0	60	13	72	24	42
86	0	59	17	61	0	51
87	0	65	20	45	0	49
88	0	53	17	47	0	47
89	0	51	20	44	0	49
90	0	59	20	44	0	45
91	0	55	11	51	0	44
92	0	61	11	45	0	45
93	0	59	20	39	13	30
94	0	65	17	43	0	49
95	0	65	20	38	0	43
96	0	54	14	43	0	49
97	0	54	16	41	0	53
98	0	61	14	44	0	48
99	0	60	18	39	0	51
100	0	67	14	41	0	49
Mean (cm)	0.1	56.1	27.3	60.8	3.2	50.7
Std devia- tion	0.5	7.4	18.8	20.1	8.9	7.0
Std error	0.05	0.75	1.87	2.09	0.99	0.78

APPENDIX 3 2021 Transect Data

Table A3.1. Water depth, thaw depth, and environmental variables at 1-meter intervals along transects T1 and T2 at the Colleen site, Prudhoe Bay, Alaska, 24 August 2021. **Vegetation height** was measured above the ground or water surface. **Vegetation type and Microrelief:** See Appendix 4, Tables A4.7 and A4.5 respectively for code descriptions.

			Transect 1	(T1)				Transect 2	(T2)	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief
0	0	110	20	В	RB	0	125	0	В	RB
1	0	110	10	CARAQU, SALOVA	RB	0	118	1	PUCPHR	RB
2	0	100	12	Trench berm	RB	0	103	1	В	RB
3	0	72	10	U4d	RB	0	90	12	CARAQU	RB
4	0	60	14	U4d	FC	0	82	10	CARAQU	НС
5	0	61	15	U4d	R	0	74	15	M2d	НС
6	0	63	13	U4d	LC	0	75	13	M2d	НС
7	0	66	10	U4d	R	8	60	16	M2d	Т
8	0	58	13	M2d	Т	0	68	18	M2d	НС
9	0	67	12	U4d	R	0	63	20	M2d	НС
10	0	68	15	U4d	R	0	67	18	M2d	НС
11	0	67	15	U4d	R	0	65	14	M2d	НС
12	0	73	14	U4d	R	0	58	20	M2d	НС
13	0	68	12	M2d	LC	0	59	15	M2d	НС
14	0	68	12	M2d	LC	0	64	25	E1D	НС
15	0	68	10	M2d	LC	18	70	34	E1d	Т
16	0	69	14	M2d	LC	50	70	0	E1d	т
17	0	69	10	M2d	LC	75	53	20	HIPVUL	Т
18	0	69	10	M2d	LC	50	70	10	W	Т
19	0	67	13	M2d	10	30	68	37	F1d	т
20	0	67	15	M2d	10	5	63	22	HIPVUI	т
21	0	66	13	U4d	10	8	67	25	F1d	т
22	0	61	10	U4d	10	0	62	15	M2d	нс
23	0	65	10	U4d	R	0	62	15	M2d	нс
23	0	68	15	U4d	R	0	60	13	M2d	нс
24	0	62	30	E1d	т	0	63	15	M2d	нс
25	0	52	16	E1d	т	0	60	10	M2d	нс
20	0	59	35	E1d	т	0	61	10	M2d	нс
27	0	50	28	E1d	т	0	63	12	M2d	нс
20	0	47	30	E1d	т	0	63	14	M2d	нс
30	0	47	17	E1d	т	0	61	15	M2d	нс
31	0	47	22	M2d	R	0	61	13	M2d	нс
37	0	65	16	LIAd	P	0	30	12	M2d	нс
33	0	62	16	U4d	R	0	61	14	M2d	нс
34	0	61	14	U4d	R	0	62	17	M2d	нс
35	0	61	5	U4d	R	10	64	35	F1d	т
36	0	46	18	U4d	т	38	50	47	E1d	т
37	0	46	16	E1d	т	28	59	20		т
39	0	40	30	E1d	т	20	57	40	E1d	т
30	0	32	0	E1d	т	18	56	3/	E1d	т
40	0	54	22	Eld	т	20	52	24	Eld	T
<u></u>	0	5/	20		P	16	57	35	E1d	Т
41	0	51	12	Ulad	n D	10	57	22	Eld	т
12	0	51	10	Mod		2	10	50	E1d	т Т
45	0	50	10	M2d		ے ۲	49	15		г т
44	0	50	15	M2d		45	40	10		т Т
40	0	52	15	IVI20		48	40	10		<u> </u>
40	0	5/	14	040	<u>к</u>	44	42	15		 -
4/	0	48	10	IVI20	- I -	45	30	23		 -
48	0	4/	1/	M2a	- I -	35	50	15		
49	0	49	10	M2a	- I -	20	63	30	EIG	
50	0	52	15	M2d		0	54	30	L FIG	

Table A3.1 (continued). Colleen site, transects T1 and T2.

			Transect 1	(T1)				Transect 2	(T2)	
Distance	Water	Thaw	Vegetation			Water	Thaw	Vegetation		
from road	depth	depth	height	Vegetation	Micro-	depth	depth	height	Vegetation	Micro-
(m) 51	(Cm)	(CIII)	(CIII) 16	type		(cm)	(CM)	(CIII)	type	rellel
52	0	57	10	U4d	P	0	57	10	U4d	P
53	0	55	13	M2d		0	62	15	U4d	R
53	0	57	17	M2d		0	59	20	U4d	R
55	0	58	12	M2d		0	58	15	U4d	R
55	0	60	10	M2d		0	58	15	U4d	R
57	0	59	14	U4d	R	0	51	14	M2d	R
58	0	54	7	U4d	т	0	56	12	M2d	т
59	0	46	14	M2d	Т	0	59	12	M2d	T
60	0	56	8	U3d	R	0	58	20	M2d	НС
61	0	54	10	M2d	LC	0	58	15	M2d	НС
62	0	54	13	M2d	LC	0	55	12	M2d	HC
63	0	60	13	U4d	LC	0	53	14	U4d	HC
64	0	60	10	M2d	LC	0	50	15	U4d	HC
65	0	59	12	M2d	LC	0	46	12	U4d	HC
66	0	53	9	M2d	LC	0	46	14	U4d	HC
67	0	51	11	M2d	LC	0	55	12	U4d	HC
68	0	50	11	M2d	LC	0	66	20	U4d	Т
69	0	49	12	U4d	R	10	53	30	E1d	Р
70	0	48	15	U4d	R	11	55	25	E1d	Р
71	12	55	40	E1d	Р	5	60	13	HIPVUL	Р
72	40	60	0	E1d	Р	0	61	14	U4d	HC
73	49	59	0	W1	Р	0	56	20	U4d	Р
74	70	66	0	W1	Р	0	52	17	U4d	HC
75	53	67	15	W1	Р	0	54	15	U4d	HC
76	60	57	0	W1	Р	0	49	14	U4d	HC
77	38	56	0	E1d	Р	0	48	15	U4d	HC
78	0	59	16	M2d	FC	0	48	10	U4d	HC
79	0	45	14	U4d	FC	0	50	10	U4d	HC
80	0	51	15	U4d	FC	0	50	11	U4d	HC
81	0	52	16	U4d	FC	0	47	10	U4d	HC
82	0	55	10	U4d	FC	0	56	9	U4d	HC
83	0	48	13	U4d	FC	3	72	0	B	Р
84	0	51	13	U4d	FC	15	90	2	RANHYP	P
85	0	47	12	U4d	FB	54	55	29	CALGIG	P
80	0	43	12	030	К	28	48	30	CALIGIG	P
00	0	42	12	030		60	20	20	CALIGIG	Р
80	0	49	5	1124	FC	50	48	25		р
90	0	54	10	Usd	R	37	63	23	CALGIG-RANHYP	P
91	0	59	2	Usd	R	34	60	22		P
92	0	60	12	U3d	R	8	77	15	RAN-	P
									HYP-HIPVUL-CAL- GIG	
93	9	57	35	E1d	Т	22	79	15	Eid	Р
94	17	49	30	E1d	Т	0	74	11	M2d	Т
95	25	46	35	E1d	Т	0	52	5	U4d	HC
96	30	40	35	E1d	T	0	53	15	U4d	HC
97	16	47	45	U4d	R	0	60	14	U4d	HC
98	0	62	12	E1	Ť	0	59	12	U4d	HC
99	0	55	14	U4d		0	68	13	U4d	HC
100	0	49	13	U4d		0	56	14	U4d	HC -
105	0	60 50	16	U3d	К	0	64	15	R	F
110	0	52	11	U40	к	0	80	10	M44	г т
115	U	55	12	040	ГЦ	21	44	L 12	11/140	I

			Transect 1	(T1)				Transect 2	(T2)	1
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief
120	0	50	4	U3d	R	0	69	17	M2d	FB
125	0	66	2	U3d	R	0	77	24	M2d	FB
130	0	52	14	M2d	LC	0	55	13	M2d	НС
135	0	57	17	M2d	LC	23	53	20	SCOSCO	Р
140	1	56	22	M2d	Т	0	53	11	U4d	НС
145	0	46	10	U4d	R	0	51	20	M2d	HC
150	0	56	10	U4d	R	0	56	13	M2d	HC
155	0	48	15	U4d	R	0	55	18	U4d	HC
160	0	53	20	M2d	Т	0	58	14	M2d	HC
165	27	54	42	E1d	Т	0	60	12	M3d	НС
170	0	40	12	U4d	LC	30	58	0	В	Т
175	0	58	12	M2d	FC	0	53	18	U4d	HC
180	0	55	20	E1d	Р	0	46	14	U4d	HC
185	6	53	15	M2d	LC	0	55	13	E1d	Т
190	0	52	13	M2d	LC	0	57	15	U4d	HC
195	0	48	15	U4d	R	2	55	20	E1d	Т
200	7	53	24	E1d	Т	0	50	18	U4d	HC
Mean (cm)	3.8	56.7	14.7			9.7	59.4	17.3		
Std devia- tion	12.3	11.2	8.2			18.0	13.5	9.1		
Std error	0.10	.09	.07			0.15	0.11	0.08		

Table A3.1 (continued). Colleen site, transects T1 and T2.

ay,	
oe B	
idhe	
Pru	
site,	
ort	ns.
Airp	ptic
he	SCri
att	e de
21),	cod
t 20	for
gus	vely
AU	ecti
1 (2)	dsə,
it 74	4.51
nsec	ЧP
trai	7 an
and	A4.
21) (bles
20.	, Tai
gust	lix 4
Au	enc
(24	App
1 T5	See.
anc	ief:
5 73	ler
ecta	licro
ans'	ΝP
ig ti	e an
alor	typ
als	ion
terv	etat
er in	/egé
nete	се,
1-1	urfa
es ai	er sı
abl€	wat
vari	lor
ital	nnc
ner	gro
ron	the
envi	оле
pu	d ab
h, a	nrea
lept	ieas
W a	m st
tha	t wc
oth,	igh
, de	ηhe
'ater	itioi
Ň	Jeta
13.2	Veç
le /	ska.
<u> </u>	σ

			Transect 3 (T.	3)				Transect 4 (T	(4)				Transect 5 (T	5)	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Microrelief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type, 2015	Microrelief, 2015	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Microrelief
0	Road berm	Road berm	Road berm	gravel	ßB	6	100	37	E1d	ßB	0	n.d.	0	Bare	RB
1	Road berm	Road berm	Road berm	gravel	RB	7	100	25	E1d	RB	0	n.d.	0	Bare	RB
2	Road berm	Road berm	Road berm	gravel	RB	0	73	18	U4d	Я	0	75	0	Bare	RB
£	Road berm	Road berm	Road berm	gravel	RB	4	67	36	U4d	æ	0	n.d.	0	Bare	RB
4	Road berm	Road berm	Road berm	gravel	RB	10	64	39	M2d	Ð	0	n.d.	0	Bare	RB
5	0	65	0	Bare	ж	16	62	35	M2d	ĥ	0	n.d.	0	Bare	Trench
9	0	69	1	Bare	R	17	68	50	M2d	FC	0	n.d.	0	Bare	Trench
7	0	51	18	Bare	R	22	60	49	E1	Ŧ	0	n.d.	0	Bare	Trench
8	6	55	25	E1d	Т	23	62	53	E1	т	0	n.d.	0	Bare	Trench
6	0	54	28	E1d	т	28	58	50	M2d	ĥ	0	118	0	Bare	Trench
10	0	66	1	B16	æ	13	61	45	M2d	ĥ	0	110	0	Bare	Trench
11	0	64	0	Bare	¥	14	63	34	M2d	ĥ	0	100	0	Bare	Trench
12	0	58	0	Bare	æ	12	66	45	M2d	Ρ	0	73	0	Bare	Trench
13	0	60	-	SALOVA/ SALRIC	Η	20	72	52	M2d	FC	0	74	15	Bare/CARA- QU	Trench
14	0	63	-	Bare	ЧC	35	>100	30	M2d	FC	0	66	15	Bare/CARA- QU	Trench
15	0	63	1	SALOVA	Ч	17	108	54	E1	Т	0	23	0	Bare	Trench
16	0	62	1	SALOVA	T, edge	12	>100	44	M2d	ĥ	0	71	0	Bare	Trench
17	0	53	0	Bare	т	13	83	49	M2d	ĥ	0	63	0	Bare	Trench
18	0	65	0	B17	ж	17	>100	54	M2d	ĥ	0	63	0	Bare	Trench
19	0	65	4	B17	ж	19	100	40	M2d	ĥ	0	70	16	ERIANG	Trench
20	0	63	2	B17	¥	38	>100	43	E1	т	0	72	16	ERIANG	Т
21	0	62	5	B17	¥	60	>100	0	E1	г	14	55	45	E1d	т
22	0	61	1	B17	Ч	30	>100	58	E1	Т	15	58	45	E1d	н
23	0	60	3	B17	HC	27	>100	64	E1	Т	20	48	45	E1d	Т
24	0	61	4	B17	HC	25	>100	52	M2d	FC	26	43	45	E1d	Т
25	0	60	4	B17	HC	30	>100	54	M2d	FC	22	41	45	E1d	Т
26	0	54	-	B17	HC	38	>100	53	E1	Т	0	65	25	U4d	В
27	0	58	1	B17	R	30	>100	50	E1	Т	0	60	15	U4d	R
28	0	55	-	B17	HC, incipient T	55	>100	70	E1	Т	16	41	28	E1d	г
29	0	60	2	B17	Ĥ	56	>100	75	E1	Т	0	60	18	U4d	В
30	0	59	-	B17	Ĥ	49	>100	66	E1	Т	0	61	15	U4d	В
31	0	49	-	Bare	¥	35	>100	59	E1	г	0	61	14	U4d	R
32	0	63	0	Bare	Ĥ	28	>100	66	E1	Т	0	66	15	U4d	В
33	0	71	0	Bare	HC	32	65	55	E1	г	0	55	12	U4d	В
34	0	40	35	Willows	г	35	83	64	E1	г	0	50	12	U4d	В
35	0	63	-	Bare	НС	57	99	78	E1	н	0	48	15	M2d	ΓC

APPENDIX 3

T3, T4 and T5.
transects
Airport site,
continued).
A3.2 (
Table ,

			Transect 3 (T3	3)				Transect 4 (T	4)				Transect 5 (T:	()	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Microrelief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type, 2015	Microrelief, 2015	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Microrelief
36	0	54	2	FESBRA	HC	68	72	0	M	Т	0	52	15	U4d	R
37	0	60	-	Lichens THASUB	ЧC	62	66	0	N	Т	0	54	16	U4d	R
38	0	54	0	Bare	Ч	86	56	0	M	т	0	53	25	U4d	R
39	0	60	0	Bare	H	50	80	70	E1	FC	7	54	33	E1d	т
40	0	59	0	Bare	HC collapsing into T	39	52	66	E1	FC	0	54	20	M2d	Т
41	0	58	2	B17	¥	26	59	55	E1	ĥ	0	62	12	U4d	Я
42	0	55	-	B17	¥	34	53	68	E1	ĥ	0	57	10	U4d	Я
43	0	54	2	B17	HC	23	59	46	E1	FC	0	61	5	U4d	R
44	0	58	1	B17	HC	29	64	69	E1	FC	0	63	5	B3d	FB
45	0	68	1	B17	HC	36	52	59	E1	FC	0	64	12	M2d	FB
46	0	58	0	B17	HC collapsed, SAXOPP	37	60	52	E1	FC	0	64	20	M2d	LC
47	0	85	0	Bare	В	32	55	58	E1	FC	0	58	19	M2d	LC
48	0	55	30	E1d	т	70	48	0	E1	FC	0	56	17	M2d	LC
49	0	61	25	E1d	Т	48	65	69	W	Т	0	53	19	U4d	R
50	0	70	25	M2d	T, collapsed R	31	65	55	E1	Т	0	50	17	M2d	R
51	0	70	15	B17	В	24	60	45	E1	FC	0	51	18	M2d	Т
52	0	57	ю	B17	æ	14	64	48	M2d	FC	0	46	20	M2d	т
53	0	57	8	M2d	HC	10	58	52	M2d	FC	0	51	15	M2d	LC
54	0	59	0	M2d	HC	14	57	44	M2d	FC	0	52	15	M2d	LC
55	0	60	10	M2d	HC	13	53	47	M2d	FC	0	48	16	M2d	LC
56	0	62	10	M2d	HC	13	54	41	M2d	FC	0	49	20	M2d	LC
57	0	62	12	M2d	HC	8	56	47	M2d	FC	0	51	18	M2d	LC
58	0	62	5	M2d	HC	13	54	40	M2d	FC	0	48	12	M2d	LC
59	0	61	4	M2d	HC	12	55	40	M2d	FC	0	50	17	U4d	R
60	0	66	0	M2d	Я	8	57	40	M2d	FC	0	50	12	U4d	R
61	0	61	4	B17	Я	10	52	94	M2d	FC	0	52	14	U4d	R
62	0	59	7	B17	Я	9	54	35	M2d	FC	0	56	20	U4d	FC
63	0	59	8	B17	æ	2	52	46	M2d	FC	0	60	15	B3d	FB
64	0	57	2	B17	R	9	56	37	M2d	R	0	62	10	B3d	FB
65	0	52	2	Bare	Я	10	46	40	M2d	Я	31	60	11	U4d	FC
66	0	48	0	B17	æ	6	53	42	E1	т	42	61	12	U4d	FC
67	0	63	-	B17	Я	5	53	38	U4d	Я	35	54	12	U4d	FC
68	0	68	4	B17	T, collapsed R	4	56	37	M2d	FC	0	51	12	U4d	FC
69	0	54	25	E1d	F	7	51	49	M2d	FC	0	62	12	U4d	В
70	5	53	30	E1d	г	10	50	29	M2d	Я	0	45	60	E1d	т

			Transect 3 (T:	ŝ				Transect 4 (T	4)				Transect 5 (T!	(6	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation tvpe	Microrelief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation tvpe. 2015	Microrelief, 2015	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation tvpe	Microrelief
71	0	53	24	M2d	T, collapsed R	14	41	44	M2d	ĥ	0	46	65	E1d	⊢
72	0	86	8	B17	ж	21	35	47	E1	Ŀ	0	55	60	E1d	F
73	0	57	0	Bare	ж	16	38	50	E1	ĥ	0	58	50	U4d	ĥ
74	0	59	m	B17	¥	21	43	49	E1	ĥ	0	55	14	U4d	ĥ
75	0	63	4	B17	¥	4	55	50	U4d	æ	0	55	10	U4d	ĥ
76	0	60	m	B17	웃	2	52	35	M2d	ĥ	0	55	15	U4d	ĥ
77	0	60	7	B17	¥	7	50	51	M2d	ñ	0	55	15	U4d	ĥ
78	0	60	2	B17	¥	∞	52	47	M2d	ĥ	0	54	15	U4d	ĥ
79	0	59	7	B17	웃	10	54	53	M2d	ĥ	0	55	15	M2d	ĥ
80	0	60	4	B17	웃	17	58	45	M2d	ĥ	0	55	15	M2d	ĥ
81	0	60	4	B17	¥	12	70	0	gravel	ñ	0	56	10	U4d	ĥ
82	0	60	5	B17	¥	10	74	0	gravel	ĥ	0	56	15	U4d	ĥ
83	0	75	9	B17	ж	10	80	0	gravel	ĥ	15	56	15	U4d	ĥ
84	0	63	7	B17	T, collapsed R	11	77	0	gravel	ĥ	22	48	50	E1d	F
85	0	63	12	U17	F	∞	77	0	gravel	ĥ	0	44	56	E1d	F
86	0	64	14	M10d	F	13	63	0	gravel	ĥ	0	61	20	U4d	ĥ
87	0	73	0	Bare	HC	12	55	54	M2d	FC	0	50	12	U4d	FC
88	0	59	ĸ	B17	Ч	12	52	39	M2d	FC	0	50	12	U4d	FC
89	0	56	2	B17	¥	15	47	52	M2d	FC	0	52	13	U4d	ĥ
90	0	61	9	U17	HCr	15	49	57	M2d	FC	0	49	10	U4d	FC
91	0	60	2	B17	НĊ	4	56	43	M2d	ĥ	0	48	13	U4d	ĥ
92	0	61	4	B17	HCr	6	48	37	U4d	Я	0	52	15	U4d	ĥ
93	0	66	-	B17	HCr	14	45	49	E1	т	12	40	26	E1d	⊢
94	0	68	5	B17	HCr	13	46	44	E1	т	0	54	20	U4d	ĥ
95	0	72	2	B17	Я	6	50	48	M2d	FC	0	47	13	U4d	ĥ
96	0	63	10	U17	Я	10	45	39	M2d	FC	0	52	15	U4d	ĥ
97	0	60	8	U17	Я	4	48	45	M2d	FC	0	54	16	U4d	ĥ
98	0	63	7	U17	ж	6	47	48	M2d	ĥ	0	51	15	M2d	ĥ
66	0	64	2	U17	ж	5	51	42	M2d	FC	0	55	10	U4d	ĥ
100	0	70	10	U17	HCr	6	48	48	M2d	FC	0	57	10	U4d	ĥ
Mean (cm)	0.1	60.9	5.8			21.2	66.2	43.8			2.7	57.3	16.7		
Std devia- tion	1.1	6.6	8.0			17.6	19.4	19.1			8.0	12.2	14.3		
Std error	0.01	0.07	0.08			0.18	0.19	0.19			0.08	0.13	0.14		

Table A3.2 (continued). Airport site, transects T3, T4 and T5.

Prudhoe Bay, Alaska, 23 August 2021. Vegetation height was	descriptions.	
ter intervals along transects T6, T7, and T8 at the NIRPO site, i	ef: See Appendix 4, Tables A4.7 and A4.5 respectively for code c	
Water depth, thaw depth, and environmental variables at 1-met	bove the ground or water surface. Vegetation type and Microrel i	
Table A3.3.	measured ab	

			Transect 6 (T	(9				Transect 7 (T	6				Transect 8 (1	.8)	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief
0	Ω.			EI	F	0	42	12	U4	ж	NA	NA	NA	U4	ж
1	7	48	30	EI	г	0	42	13	U4	В	0	31	12	M2	т
2	7	45	30	E1	г	0	40	7	M2	т	0	31	8	U3	ж
m	0	51	16	U3	æ	0	46	14	U4	Я	0	40	10	U4	ΓC
4	0	42	10	U3	æ	0	45	10	U4	Я	0	42	11	U4	ΓC
5	0	41	18	U4	Я	0	37	14	U4	R	0	38	12	U4	ГC
و	0	43	12	U3	æ	0	33	2	U4	Я	0	45	14	U4	ΓC
7	0	40	15	U4	Я	0	36	14	U4	R	4	43	20	M2	ГC
8	0	43	7	U3	FC	0	42	7	U4	R	0	43	6	M2	ГC
6	0	35	8	U4	ĥ	0	39	10	U4	Я	0	44	12	M2	ΓC
10	0	33	11	U4	ñ	0	42	11	U4	Я	0	47	11	M2	ΓC
11	0	30	11	U2	ĥ	0	45	13	U4	Я	0	45	18	M4	т
12	0	35	15	U4	ĥ	0	42	6	U4	Я	0	54	17	14 1	Я
13	0	40	11	U4	ĥ	0	45	12	U4	Я	0	34	14	M2	ш
14	0	45	11	U4	ĥ	0	43	11	U4	Я	0	41	12	M2	ш
15	0	46	13	U3	FC	0	44	12	U4	R	0	40	15	M2	ц
16	0	37	15	U4	Я	0	39	8	U4	R	0	41	6	M2	Р
17	0	48	14	U4	R	0	41	15	U4	R	0	42	10	M2	н
18	0	60	20	U4	В	0	45	10	M2	Т	0	44	12	M2	н
19	21	57	35	E1	т	0	47	14	U4	R	0	45	13	M2	ч
20	31	49	15	E1	Т	0	55	10	U4	R	2	45	15	M2	ч
21	0	37	23	E1	т	0	48	15	U4	R	3	47	15	M2	ц
22	0	45	21	U4	FC	0	37	10	U4	R	1	47	11	M2	ц
23	0	53	21	U4	FC	0	41	13	U4	R	3	45	14	M2	ч
24	0	45	20	U4	FC	0	31	5	U4	R	2	44	16	M2	н
25	0	48	21	U4	FC	0	34	4	U4	R	2	45	15	M2	н
26	0	47	22	U4	FC	0	39	5	U4	R	1	46	15	M2	н
27	0	50	6	U4	FC	0	42	з	U4	R	1	43	13	M2	н
28	0	50	17	U4	FC	0	59	4	U4	R	0	46	16	U4	В
29	0	45	18	U2	ĥ	0	66	16	U4	В	0	41	15	U4	Я
30	0	39	22	U2	ñ	6	71	21	E1	т	0	41	16	M2	ш
31	0	40	15	U4	ж	11	55	25	E1	т	0	40	18	M2	ш
32	0	40	21	U4	Я	20	44	36	E1	т	1	44	12	M2	н
33	0	44	10	U3	R	0	37	10	U4	R	0	44	15	M2	н
34	0	60	30	U4	٣	0	49	20	U4	Ľ	2	41	17	M2	ш
35	24	55	15	E1	Р	0	48	10	M2	LC	2	41	21	M2	н
36	52	48	14	M	Ч	£	51	15	4W	ΓC	4	44	13	M2	ш

			Transect 6 (T	<u>-</u> 6)				Transect 7 (T;	7)				Transect 8 (T	.8)	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief
37	48	50	14	M	Ч	5	50	15	M4	LC	4	45	16	M2	ш
38	38	50	10	≥	٩	5	53	17	M4	ΓC	4	45	15	M2	ш
39	0	65	17	E1	4	8	52	10	M4	ΓC	4	47	20	M2	щ
40	0	62	13	N3	ж	6	50	16	M4	Ľ	4	46	12	M2	ш
41	0	43	7	U3	ж	9	50	11	M4	ΓC	4	46	14	M2	ш
42	0	40	15	U3	ж	9	50	15	M4	ΓC	1	45	15	M4	ш
43	0	44	18	U3	ж	0	53	ø	M2	ΓC	3	42	23	M4	ш
44	0	45	10	N3	ж	0	48	12	U4	Ľ	3	46	18	M2	ш
45	0	50	18	U3	ж	0	47	12	U4	ж	5	42	18	M4	ш
46	0	50	13	U3	ж	5	40	13	M2	Т	с	45	19	M4	ш
47	0	43	14	U3	ж		57	14	U4	ж	5	44	18	M4	ш
48	0	42	20	U3	Я		49	16	M2	ΓC	3	46	16	44	ш
49	0	47	16	N3	Я		55	11	M2	Ľ	5	44	17	M4	ш
50	0	4	17	N3	Я	4	46	14	M2	Ľ	7	42	16	M4	ш
51	0	45	18	U3	ж	-	52	16	M4	ΓC	5	46	17	M4	ш
52	0	4	22	U2	Я	5	52	16	M4	Ľ	£	43	16	M4	ш
53	12	63	30	E1	٩	5	52	17	M4	ΓC	£	45	17	M4	ш
54	27	61	0	N	٩	3	51	12	M4	ΓC	2	50	15	4W	ш
55	33	56	19	CALGIG	٩	0	53	12	M2	т	7	45	17	M4	ш
56	32	61	16	CALGIG	Р	6	45	15	M4	т	9	45	19	M4	F
57	36	54	2	scosco	٩	10	45	18	M4	Т	7	47	15	4W	ш
58	37	57	18	CALGIG, HIPVUL	Р	9	45	20	M4	Т	8	48	16	M4	F
59	36	62	11	CALGIG	٩	-	48	10	M2	μ	7	46	16	M4	ш
60	43	55	0	N	Ч	-	45	12	M2	Т	3	44	15	44	ш
61	42	56	0	N	Ч	0	46	11	M2	ΓC	4	41	16	44	ш
62	42	52	0	N	Ч	0	45	10	M2	ΓC	1	41	15	2M2	ш
63	36	52	10	HIPFUL	Ч	-	44	12	M2	ΓC	3	40	15	44	ш
64	29	53	40	E1	Ч	с	44	16	M2	ΓC	0	40	16	44	ш
65	22	49	0	N	Ч	0	45	10	U4	ж	3	37	18	2M2	ш
99	13	48	13	E1	Ч	0	42	11	U4	ж	1	43	19	2M2	ш
67	0	39	12	U4	В	0	50	7	U4	Я	4	43	17	44	ш
68	0	35	15	U3	ж	2	44	80	M2	н	4	45	19	M4	ш
69	0	46	20	N3	ж	0	52	12	M2	ш	3	43	18	M2	ш
70	0	54	11	U3	Я	-	48	15	M2	ш	4	47	16	44	ш
71	0	50	18	U4	Я	5	48	13	M4	ш	4	46	16	44	ш
72	0	45	23	U4	ж	с	52	16	M4	ш	2	45	19	M4	ш
73	0	43	ĸ	U2	Я	5	52	16	M4	ш	4	40	15	4W	ш

Table A3.3 (continued). NIRPO site, transects T6, T7, and T8.

T7, and T8.
T6,
transects
site,
NIRPO
(continued).
A3.3
Table

			Transect 6 (T	6)				Fransect 7 (T	7)				Transect 8 (T	8)	
Distance	Water	Thaw	Vegetation	:		Water	Thaw	Vegetation			Water	Thaw	Vegetation		
trom road (m)	depth (cm)	depth (cm)	neight (cm)	vegetation type	Micro- relief	depth (cm)	depth (cm)	neight (cm)	vegetation type	Micro- relief	depth (cm)	depth (cm)	neight (cm)	vegetation type	Micro- relief
74	0	48	17	U3	Я	5	52	19	M4	ц	٦	46	14	M2	щ
75	0	35	21	U4	т	9	48	20	M4	ш	0	50	16	M2	т
76	0	52	20	U3	Я	5	49	19	M4	ш	-	46	14	M4	щ
77	0	40	m	U3	Я	4	48	13	M4	ш	2	43	15	M2	щ
78	0	52	17	U2	R	0	48	18	M2	ц	1	44	15	M2	ш
79	0	44	12	U2	ΓC	4	48	17	M4	ш	5	37	19	M4	т
80	0	38	13	U2	ΓC	4	49	16	M2	ΓC	-	43	16	M2	щ
81	0	40	22	U4	R	0	48	15	M2	ГC	0	43	16	M2	щ
82	0	40	21	U2	Я	0	42	17	M2	ΓC	0	45	16	M2	щ
83	0	49	20	U3	Я	-	51	11	M2	ΓC	0	4	19	M2	щ
84	0	47	24	U3	R	1	50	10	M2	ГC	0	44	18	M2	ш
85	0	43	18	U4	Я	0	50	10	M2	ΓC	0	43	19	M2	щ
86	0	49	20	U4	R	0	48	12	M2	ГC	0	41	19	M2	щ
87	0	4	m	U3	В	0	48	11	M2	ΓC	0	41	15	M2	щ
88	0	52	17	U3	R	0	47	14	M2	ГC	0	44	13	M2	ш
89	0	47	16	U2	ж	0	47	15	M2	ΓC	0	40	13	M2	щ
06	0	41	20	U3	ж	0	42	13	M2	ΓC	0	38	15	U4	щ
91	0	43	22	U4	ж	0	41	11	M2	ΓC	0	37	12	U4	щ
92	0	33	22	U4	Т	0	38	13	U4	R	0	35	5	U4	ш
93	0	33	15	U4	Т	0	47	8	U4	R	0	31	10	U3	В
94	0	46	21	U4	т	0	40	12	M2	LC	0	36	8	U10	В
95	0	49	16	U3	FC	0	45	10	M2	ГC	0	34	8	U10	В
96	0	44	16	U3	FC	0	47	12	U4	н	0	37	6	U10	В
97	0	44	14	U3	FC	0	45	6	M2	LC	0	32	10	U10	В
98	0	44	22	U4	FC	0	44	10	M2	LC	0	32	8	U4	Ŀ
66	0	45	19	U3	FC	0	40	13	M2	LC	0	33	16	U4	ц
100	0	24	NA	U4	Т	0	42	12	U4	н	0	35	15	U4	ш
101	0	34	26	U2	Т	0	46	10	M2	т	0	37	12	U4	н
102	0	37	24	U4	FC	0	40	14	M2	R	0	39	6	M2	н
103	0	41	22	U4	FC	0	41	12	U4	Ъ	0	42	11	M2	н
104	0	28	18	M2	Т	0	37	6	U4	Ъ	0	43	12	M2	н
105	0	32	3	M2	Т	0	45	8	U4	Ъ	0	43	15	M2	н
106	0	39	26	M2	Т	0	35	13	M2	т	0	44	16	M2	н
107	0	55	30	U3	R	0	48	7	U4	R	0	41	12	M2	щ
108	0	59	40	U3	R	0	50	10	M2	F	0	39	15	M2	Ŀ
109	21	41	15	E1	Ρ	0	59	12	M2	Ъ	0	40	17	M2	ц
110	33	51	5	W	Ρ	0	60	10	M2	н	0	38	16	M2	Ŀ

			Transect 6 (T	6)				Transect 7 (T7	(*				Transect 8 (T	(8.	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief	Water depth (cm)	Thaw depth (cm)	Vegetation height (cm)	Vegetation type	Micro- relief
111	44	49	5	M	Ч	0	57	6	M2	щ	0	39	19	M2	ш
112	45	46	ъ	N	Ь	2	52	12	M2	ш	0	40	11	M2	ш
113	21	49	15	×	٩	0	56	10	M2	т	0	40	15	M2	ш
114	0	44	25	U4	FC	0	54	11	M2	ш	0	42	14	M2	ш
115	0	47	21	U3	Ч	0	57	12	M2	ш	0	40	10	M2	ш
116	0	46	21	U3	Ч	1	57	7	M4	ш	0	43	16	M2	ш
117	0	48	23	U3	Ч	4	56	15	M4	ш	-	41	18	M2	ш
118	0	53	18	U4	¥	4	54	12	M4	ш	1	43	16	M2	ш
119	0	55	14	U4	В	0	54	10	M2	ш	Э	39	20	M2	ш
120	0	50	22	E1	٩	0	52	7	U4	т	0	45	18	M2	ш
121	0	47	25	M2	т	0	54	11	U4	ш	2	41	17	M2	ш
122	0	49	26	U3	ж	0	53	14	M2	ш	2	40	15	M2	ш
123	0	42	22	U4	æ	0	51	10	U4	æ	0	42	16	M2	ш
124	0	43	16	U4	æ	0	48	7	U4	æ	-	41	16	M2	ш
125	0	48	18	U4	ш	0	52	13	U4	ж	-	40	14	M2	ш
126	0	52	12	U3	ш	0	39	11	U4	ж	0	41	20	M2	ш
127	0	42	7	U4	ñ	0	48	7	U4	æ	0	40	17	M2	ш
128	0	41	11	U4	R	0	48	14	U4	Я	1	41	18	M2	ш
129	0	42	10	U4	R	0	54	13	M2	ш	1	41	13	M2	ш
130	0	39	15	U4	R	0	50	12	U4	Я	1	42	15	M4	ш
131	0	41	18	U4	ñ	0	49	15	M2	ш	2	41	13	M2	ш
132	0	43	17	U2	ĥ	0	51	14	M2	ш	-	43	14	M2	ш
133	0	41	18	U4	ĥ	0	49	11	M2	ш	1	43	16	M2	ш
134	0	42	13	U4	FC	0	47	11	M2	ш	1	40	13	M2	ш
135	0	46	11	U3	ж	0	47	15	M2	ш	0	35	15	U4	в
136	0	35	18	U4	Т	0	48	16	M2	ш	1	41	16	M2	ш
137	0	34	22	U4	Т	0	50	12	M2	ш	1	42	17	M2	ш
138	0	42	17	U4	ж	0	48	13	M2	ш	0	46	18	M2	ш
139	0	40	18	U4	ĥ	0	49	12	U4	ж	1	42	17	M2	ш
140	0	38	16	U4	FC	0	47	14	U4	ж	2	42	16	M4	ш
141	0	38	17	U4	FC	0	51	8	U4	Я	3	43	12	M4	ш
142	0	40	15	U4	ж	0	48	11	U4	В	2	42	10	M4	ш
143	0	38	12	U4	ж	0	51	16	U4	ж	3	42	6	M4	ш
144	0	28	6	U4	т	23	53	0	U4	æ	0	44	18	U2	ш
145	0	45	15	U4	Ρ	39	51	0	U4	ж	З	40	13	M4	ш
146	0	40	13	U4	Ρ	34	53	0	U4	ж	9	40	19	M4	ш
147	0	47	16	U4	ñ	27	61	40	U4	8	4	42	17	M4	ш

Table A3.3 (continued). NIRPO site, transects T6, T7, and T8.

8
and
7,
T6,
transects
site,
NIRPO
(continued).
3.3
A
Table

			Transect 6 (T	(9)				Transect 7 (T	3				Transect 8 (T	8)	
Distance	Water	Thaw	Vegetation			Water	Thaw	Vegetation			Water	Thaw	Vegetation		
rrom road (m)	deptn (cm)	aeptn (cm)	neight (cm)	type	Micro- relief	deptn (cm)	deptn (cm)	neight (cm)	vegetation type	Micro- relief	aeptn (cm)	deptn (cm)	neight (cm)	vegetation type	MICO- relief
148	0	45	15	U4	FC	25	54	35	M	Ь	3	41	12	M4	ц
149	0	47	21	U4	FC	18	52	30	E1	٩	9	42	13	M4	щ
150	0	43	10	U4	ж	0	54	18	M2	н	6	40	13	M4	ш
151	0	42	16	U4	т	0	50	14	U4	ж	5	40	14	M4	щ
152	0	41	21	U4	ж	0	57	10	M2	ш	4	41	18	M4	ш
153	0	58	20	U4	ж	0	55	11	E1	щ	4	40	17	M4	щ
154	0	45	12	U4	ĥ	0	56	0	E1	щ	5	42	11	M4	щ
155	0	47	13	U4	ĥ	0	58	0	E1	щ	5	38	19	M4	щ
156	0	44	15	U4	FC	0	52	11	E1	ш	5	41	12	M4	щ
157	0	41	18	U4	FC	0	53	10	E1	ш	1	42	15	M4	щ
158	0	40	16	U4	FC	0	50	10	E1	ш	2	43	17	M4	щ
159	0	33	13	U4	ĥ	0	54	10	E1	ш	2	43	16	M4	ш
160	0	43	16	U4	FC	0	53	12	E1	ш	2	43	19	M4	щ
161	0	55	19	U4	FC	0	55	11	E1	ш	4	41	12	M4	Ъ
162	15	51	20	E1	Р	0	51	12	E1	ц	1	43	15	M4	ц
163	33	51	0	W	Р	0	50	5	E1	ц	4	41	17	M4	ц
164	34	48	13	CALGIG	Р	0	50	6	E1	ц	2	42	18	M4	ц
165	36	42	10	CALGIG	Ч	0	52	10	E1	ш	0	43	15	M4	Ъ
166	0	50	28	E1	Т	0	50	14	M4	ш	0	41	18	M2	щ
167	0	51	20	U3	FC	0	55	12	M4	ш	0	40	17	M4	щ
168	0	42	21	U4	FC	0	50	10	M4	ц	1	43	12	M4	ц
169	0	35	13	U4	FC	0	48	13	M4	ш	2	40	13	M4	Ъ
170	0	38	16	U4	FC	0	36	16	M4	ц	1	41	10	M4	ц
171	0	40	22	U4	FC	-	55	15	M4	ш	0	43	6	M4	Ъ
172	0	39	24	U4	FC	11	48	16	M4	Т	0	41	12	M4	Ъ
173	0	38	14	U4	ĥ	0	58	13	M4	ш	0	42	15	M4	щ
174	0	34	14	U4	ĥ	0	50	14	M4	ш	0	44	16	M4	щ
175	0	49	15	U3	Я	0	57	15	M4	ш	0	44	18	M4	щ
176	0	45	13	U3	R	0	51	15	M4	ш	-	40	17	M2	Ъ
177	0	36	7	U4	Т	0	51	15	M4	ш	-	42	17	M2	Ъ
178	0	47	22	U3	Я	0	54	16	M4	ш	1	39	18	M4	ш
179	0	44	17	U4	Я	0	53	15	M4	ш	0	45	18	M4	щ
180	0	50	18	U4	ж	0	57	14	M4	ш	0	44	11	M4	ш
181	0	50	28	U4	Я	0	52	15	M4	ш	с	42	13	M4	ш
182	0	45	25	M2	Т	0	52	13	M4	ш	2	41	12	M4	щ
183	0	48	22	U4	Я	0	56	15	M4	ш	4	40	13	M4	ш
184	0	49	23	U4	ж	0	52	14	M4	ш	-	43	6	M4	щ

			Transect 6 (T	(9)				Transect 7 (T	(/				Transect 8 (T	8)	
Distance	Water	Thaw	Vegetation			Water	Thaw	Vegetation			Water	Thaw	Vegetation		
from road	depth	depth	height	Vegetation	Micro-	depth	depth	height	Vegetation	Micro-	depth	depth	height	Vegetation	Micro-
(m)	(cm)	(cm)	(cm)	type	relief	(cm)	(cm)	(cm)	type	relief	(cm)	(cm)	(cm)	type	relief
185	0	44	17	M2	т	0	53	10	M4	ш	3	42	13	M4	ш
186	0	46	12	U4	Я	0	48	13	M2	ш	2	7 4	13	M4	ш
187	0	46	17	U4	Я	0	50	14	M2	ш	L	42	15	M4	ш
188	0	45	22	M2	FC	0	44	10	M2	ш	L	7 4	6	M4	ш
189	0	51	22	M2	FC	0	53	7	M2	ш	2	38	16	M4	ш
190	0	53	18	M2	FC	0	44	6	M2	ш	L	37	15	M4	ш
191	0	57	21	M2	FC	0	44	10	U4	Я	0	42	15	M4	ш
192	0	54	22	M2	FC	0	39	12	U4	ч	-	43	17	M4	ш
193	0	52	19	M2	FC	0	43	5	U4	Я	3	43	18	M4	ш
194	0	50	17	M2	FC	0	45	10	U4	Я	0	46	10	M4	ш
195	0	46	23	M2	£	0	4	12	M2	Т	4	42	12	M4	ш
196	0	43	24	U4	ж	0	40	14	M2	Т	2	4	13	M4	ш
197	0	45	23	U4	£	0	44	14	U4	Я	£	42	16	M4	ш
198	0	64	28	U4	FC	0	42	11	U4	Я	2	42	15	M4	ш
199	29	51	10	E1	٩	0	43	10	U4	Я	5	41	16	M4	ш
200	36	50	35	M	Р	0	30	11	U4	R	4	31	15	M4	ц
Mean (cm)	5.1	45.5	16.8			1.9	48.2	12.3			1.7	41.9	14.8		
Std devia- tion	12.3	7.1	6.9			5.4	6.2	5.1			2.0	3.5	3.0		
Std error	0.10	0.06	0.06			0.03	0.03	0.03			0.01	0.02	0.02		

APPENDIX 3

Table A3.3 (continued). NIRPO site, transects T6, T7, and T8.

r

Table A3.4. Water depth, thaw depth, and environmental variables at 1-meter intervals along transect T9 at the NIRPO site, Prudhoe Bay, Alaska, 23 August 2021. Vegetation height was measured above the ground or water surface. Vegetation type and Microrelief: See Appendix 4, Tables A4.7 and A4.5 respectively for code descriptions.

	Micro- relief	F	Я	Т	т	т	Я	Я	ΓC	ΓC	ГC	ГC	ГC	Ľ	т	ΓC	Ľ	Ľ	Ľ	ΓC	ГC	ΓC	ΓC	т	Я	ГC	LC	LC										
(6	Vegeta- tion type	U4	U4	M2	M2	M2	U4	U4	U4	U4	U4	U4	M2	U4	M2	U4	M2	M2	M2																			
nsect 9 (T	Vegeta- tion ht. (cm)	19	20	19	13	18	17	16	15	17	11	10	10	12	11	14	15	13	11	13	8	12	10	12	6	10	13	12	12.8	4.5	0.05							
Tra	Thaw depth (cm)	42	35	32	35	37	39	35	38	42	38	39	42	40	36	41	46	46	4	47	48	44	41	39	39	41	43	41	38.1	4.6	0.05							
	Water depth (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	5	0	1	0	0	0.1	0.5	0.01							
	Distance from road (m)	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	96	91	92	93	94	95	96	97	98	66	100	Mean (cm)	Std dev	Std error							
	Micro- relief	FC	FC	R	т	R	FC	т	т	FC	Т	FC	R	Т	R	FC	FC	FC	FC	г	ĥ	FC	FC	FC	FC	FC	FC	FC	ĥ	ĥ	FC							
6)	Vegeta- tion type	U4	U4	U3	M2	U3	U4	U4	M2	U4	U4	U4	U4	U4	U4	U4	U4	U4	U3	U3	U4	U3	U4	U4	U4	U4	M2	U4	U4	U4	U4	U4	U4	U4	U4	U4	U4	U4
ansect 9 (T	Vegeta- tion ht. (cm)	15	17	10	16	11	15	8	12	12	13	14	16	11	14	16	16	17	12	12	13	18	20	10	12	11	10	12	16	10	11	7	8	12	15	13	16	16
Tr	Thaw depth (cm)	36	33	38	29	36	33	35	35	40	34	42	38	40	31	42	39	37	34	35	34	33	34	32	32	33	29	37	34	37	37	36	35	43	41	42	38	40
	Water depth (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Distance from road (m)	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
	Micro- relief	г	Т	Т	т	В	В	Я	В	В	В	В	Т	н	FC	FC	FC	FC	ж	В	FC	FC	FC	FC	FC	Я	Я	Я	FC	FC	FC	FC	FC	Я	т	ж	FC	FC
6)	Vegeta- tion type	M2	U4	U4	U4	U3	U3	U3	U3	U3	U\$	U4	E1	U4	U4	U4	U4	U4	U3	U3	U4	U4	U4	U4	U4	U3	U3	U3	U4	U4	U4	U4	U3	U4	M2	U3	U4	U4
ransect 9 (T	Vegeta- tion ht. (cm)	NA	13	7	14	10	14	5	14	7	10	11	13	6	12	11	12	8	15	10	14	10	15	10	13	5	4	5	3	4	16	21	25	36	10	20	10	15
Ē	Thaw depth (cm)	NA	29	28	28	37	38	37	38	39	45	53	40	48	41	40	39	42	36	39	36	38	38	38	39	35	35	42	42	38	40	39	40	44	38	40	40	34
	Water depth (cm)	NA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Distance from road (m)	0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

Table A3.5. Water depth, thaw depth, and environmental variables at 1-meter intervals along a 250-m transect at the Jorgenson site, Prudhoe Bay, Alaska, 23 August 2021. Vegetation height was mea-sured above the ground or water surface. Vegetation type and Microrelief: See Appendix 4, Tables A4.7 and A4.5 respectively for code descriptions.

	Micro- relief	μ	R	FC	T	T	ж	FC	FC	ñ	FC	FC	FC	FC	ñ	F	н	F	Т	т	т	т	т	Т	т	T	н	ж	Ä	ĥ	ñ							
ect (JS)	Vegeta- tion type	E1	U4	U4	U4	U4	U4	M2	U4	U4	U4	U4	E1	U4	U4	U4	M2	U4	U4	U4	U4	M2	E1	HIPVUL	HIPVUL	E1	M2	M2	E1	E1	E1, SCOSCO	scosco	scosco	E1, SCOSCO	M2	U4	M2	U4
nson Transe	Vegeta- tion ht. (cm)	55	18	15	8	15	12	15	11	15	11	20	35	12	12	12	13	7	12	6	15	17	20	NA	NA	38	25	19	30	40	50	18	20	40	12	12	12	14
Jorgei	Thaw depth (cm)	47	71	56	56	52	52	52	52	52	49	52	44	65	56	57	57	60	59	57	55	54	69	64	49	71	69	67	59	47	51	53	47	46	53	58	50	50
	Water depth (cm)	38	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	6	50	54	19	0	0	10	13	25	24	26	22	0	0	0	0
	Distance from road (m)	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110
	Micro- relief	F	FC	Т	T	ч	R	т	R	FC	ĥ	FC	FC	FC	FC	ĥ	ж	F	⊢	т	FC	FC	FC	FC	FC	FC	FC	FC	FC	ж	⊢	⊢						
ct (JS)	Vegeta- tion type	U4	M2	M2	U4	M2	M2	M2	M2	M2	U4	U4	U4	E1	E1	E1	U4	U4	U4	M2	M2	U4	U4	U4	U4	U4	E1	E1										
son Transe	Vegeta- tion ht. (cm)	13	12	12	10	17	15	19	6	14	11	12	6	12	2	17	6	16	16	15	10	18	15	40	42	45	15	15	11	10	10	10	1	8	7	15	55	70
Jorger	Thaw depth (cm)	42	47	41	48	52	48	39	52	42	46	50	54	53	60	58	60	60	59	59	58	52	64	45	42	36	63	53	45	57	56	58	60	59	59	63	42	41
	Water depth (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	26	27	0	0	0	0	0	0	0	0	0	0	60	60
	Distance from road (m)	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
	Micro- relief	F	FC	FC	Т	FC	ĥ	FC	FC	ĥ	FC	FC	FC	FC	ĥ	ĥ	ĥ	ĥ	FC	Ρ	Ρ	Ρ	Ρ	FC	FC	FC	FC	ĥ	ĥ	ĥ	ĥ							
ict (JS)	Vegeta- tion type	U4	M2	M2	M2	M2	M2	M2	U4	U4	U3	U4	E1	CALGIG	E1	E1	U3	U3	U3	U4	U4	U4	U4	U4														
nson Transe	Vegeta- tion ht. (cm)	17	15	17	18	10	6	15	12	11	15	13	11	10	17	11	18	15	16	16	14	18	17	14	2	23	0	8	40	40	12	16	6	12	11	15	12	13
Jorgei	Thaw depth (cm)	55	45	50	43	48	50	50	52	47	50	49	48	50	47	54	45	55	54	48	48	50	49	48	57	64	51	43	46	49	52	53	53	52	46	49	43	44
	Water depth (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	28	28	16	0	0	0	0	0	0	0	0
	Distance from road (m)	0	1	2	с	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

Table A3.5 (continued). Jorgenson site 250-m transect.

		Jorge	enson Trans	ect (JS)				Jorge	nson Trans	ect (JS)				Jorge	inson Trans	ect (JS)	
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegeta- tion ht. (cm)	Vegeta- tion type	Micro- relief	Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegeta- tion ht. (cm)	Vegeta- tion type	Micro- relief	Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegeta- tion ht. (cm)	Vegeta- tion type	Micro- relief
111	0	61	10	M2	FC	148	5	62	35	E1	т	185	36	55	50	E1	Ч
112	24	50	40	E1	Т	149	0	62	15	U4	FC	186	51	54	15	scosco	٩
113	13	48	28	E1	т	150	0	56	15	U4	FC	187	47	51	15	SCOSCO	Р
114	0	54	15	U4	Я	151	0	56	4	U3	FC	188	19	56	45	E1	Р
115	0	53	12	M2	ΓC	152	0	57	10	U4	FC	189	0	57	12	M2	R
116	0	56	12	M2	ΓC	153	0	57	12	U4	FC	190	0	53	12	U4	Я
117	0	58	12	M2	ΓC	154	0	59	12	U4	FC	191	0	55	12	U4	ГC
118	0	59	10	U4	ΓC	155	0	56	11	U4	FC	192	0	56	12	U4	ГC
119	0	58	12	U4	ΓC	156	0	57	13	U4	FC	193	0	61	7	M2	ΓC
120	0	60	8	U4	ΓC	157	0	57	12	U4	FC	194	0	61	10	M2	ГC
121	0	59	10	U4	ж	158	0	61	10	U4	FC	195	0	60	12	M2	ΓC
122	0	56	8	U4	Я	159	0	60	15	U4	FC	196	0	55	14	U4	ГC
123	0	48	12	U4	R	160	0	60	10	U4	FC	197	0	56	12	U4	R
124	0	51	12	U4	R	161	0	59	13	U4	FC	198	0	56	10	U4	R
125	0	52	18	U4	Я	162	0	57	10	U4	FC	199	0	56	15	U4	Я
126	0	50	15	U4	Т	163	0	60	13	U4	FC	200	0	58	15	U4	Я
127	0	51	12	U4	Я	164	0	68	15	U4	FC	201	0	52	14	U4	Я
128	0	60	2	U3	R	165	7	58	39	E1	Т	202	0	57	8	U4	FC
129	0	45	12	U4	Я	166	5	58	30	E1	Т	203	0	50	10	U4	Я
130	0	54	12	U4	Я	167	8	55	29	E1	Т	204	0	54	10	U4	Я
131	0	54	6	U4	R	168	10	56	40	E1	Т	205	0	56	13	U4	R
132	0	57	10	M2	ΓC	169	12	55	36	E1	Т	206	0	53	10	U4	Я
133	0	56	17	M2	ΓC	170	12	48	40	E1	Т	207	0	55	15	U4	Я
134	0	55	12	M2	ΓC	171	0	63	12	U4	FC	208	0	55	15	M2	Я
135	0	60	12	U4	R	172	0	54	10	U4	FC	209	0	58	12	M2	FC
136	0	52	15	U4	Я	173	0	56	12	U4	FC	210	0	60	12	U4	FC
137	0	50	23	U4	ж	174	0	56	10	U4	ĥ	211	0	51	12	U4	ĥ
138	0	50	18	U4	Т	175	0	55	12	U4	FC	212	0	48	12	U4	ж
139	0	55	17	U4	ж	176	0	55	7	U4	ĥ	213	0	47	12	U4	æ
140	0	51	15	U4	FC	177	0	54	6	U4	ĥ	214	0	57	10	U3	٣
141	0	54	12	U4	FC	178	0	54	7	U4	FC	215	0	55	16	U4	Я
142	0	54	12	U4	FC	179	0	54	12	U4	FC	216	8	56	15	E1	Т
143	0	58	15	U4	FC	180	0	56	10	M2	ĥ	217	20	63	15	E1	н
144	0	81	15	U4	FC	181	0	57	12	U4	FC	218	40	53	50	HIPVUL	Т
145	55	49	65	E1	Т	182	0	59	12	U4	FC	219	33	54	15	E1	Т
146	63	52	75	E1	Т	183	0	60	12	M2	FC	220	0	68	10	U4	ж
147	59	51	0	N	Т	184	0	62	20	M2	Т	221	0	54	7	U4	Я

Table A3.5 (continued). Jorgenson site 250-m transect.

	Jorgenson Transect (JS)							
Distance from road (m)	Water depth (cm)	Thaw depth (cm)	Vegeta- tion ht. (cm)	Vegeta- tion type	Micro- relief			
222	0	51	5	U4	R			
223	0	48	13	U4	FC			
224	0	52	5	U4	FC			
225	0	50	8	U4	FC			
226	0	52	8	U4	FC			
227	0	54	7	M2	FC			
228	0	51	8	M2	FC			
229	0	54	6	U4	FC			
230	0	49	12	M2	Т			
231	0	53	18	M2	Т			
232	0	54	10	M2	Т			
233	5	47	16	M2	Т			
234	0	55	12	M2	FC			
235	0	55	15	M2	FC			
236	0	57	10	M2	FC			
237	0	58	11	M2	FC			
238	0	51	12	M2	FC			
239	0	60	12	M2	FC			
240	0	56	15	M2	FC			
241	0	56	12	M2	FC			
242	0	54	10	M2	FC			
243	0	55	10	M2	FC			
244	0	55	12	M2	R			
245	17	60	44	E1	Т			
246	57	53	64	E1	Т			
247	57	54	70	E1	Т			
248	38	56	63	E1	Т			
249	23	51	35	E1	Т			
250	9	46	12	E1	Т			
Mean (cm)	5.3	54.1	16.8					
Std dev	13.4	6.2	12.6					
Std error	0.05	0.02	0.05					

APPENDIX 4 2021 NIRPO Terrestrial Plot Data and Photos

 Table A4.1. NIRPO terrestrial vegetation plots. Observers: Donald A. Walker, Amy L. Breen. Latitude, Longitude, Orthometric and Ellipsoid Height based on DGPS survey, 25 August 2021.

Plot ID	Date sampled	Plot photo no.	Soil photo no.	Tran- sect	Latitude (WGS84 DD)	Longitude (WGS84 DD)	Orthometric height (m)	Ellipsoidal height (m)
21-01	2021-07-22	7016-7018	7013-7015	T8	70.231197	-148.458217	12.1791	8.0035
21-02	2021-07-22	7020-7023	7019	T8	70.231383	-148.457347	12.1879	8.0119
21-03	2021-07-22	7025-7028	7024	T8	70.231053	-148.461164	11.9466	7.7714
21-04	2021-07-22	7030-7032	7029	T8	70.230886	-148.460253	11.9839	7.8092
21-05	2021-07-19	6934-6936	6956	T6	70.231692	-148.450386	12.7407	8.5652
21-06	2021-07-19	6937-3939	6958	T6	70.231667	-148.451058	12.9845	8.8089
21-07	2021-07-19	6940-6943	6963	T6	70.231586	-148.451672	12.8488	8.6733
21-08	2021-07-19	6944-6946	6965	T6	70.231553	-148.452586	12.7015	8.526
21-09	2021-07-19	6950-6955	6966	T6	70.231467	-148.453208	12.6875	8.5118
21-10	2021-07-19	6947-6949	6968	T6	70.231653	-148.452497	12.8252	8.6494
21-11	2021-07-21	6975-6978	6969	T6	70.231636	-148.452381	12.4959	8.3202
21-12	2021-07-21	6979-6981	6970	T6	70.231447	-148.452181	12.5203	8.345
21-13	2021-07-21	6982-6985	6986	T6	70.231722	-148.451733	12.6	8.4242
21-14	2021-07-21	6990-6992	6993	T6	70.231639	-148.451456	12.5761	8.4005
21-15	2021-07-21	6994-6996	6997	T6	70.231775	-148.450261	12.3839	8.2082
21-16	2021-07-21	6999-7001	7002	T6	70.231506	-148.449506	12.2445	8.0694
21-17	2021-07-22	7006-7008	7005	T8	70.231267	-148.457156	12.3475	8.1717
21-18	2021-07-22	7009-7012	7013	T8	70.231153	-148.458039	12.2549	8.0794
21-19	2021-07-23	7037-7040	7035-7036	T9	70.231794	-148.456894	12.2276	8.0507
21-20	2021-07-23	7044-7046	7043	T9	70.23195	-148.454883	12.926	8.749
21-21	2021-07-23	7049-7051	7052	T9	70.231864	-148.454611	12.9039	8.7271
21-22	2021-07-23	7054-7058	7059	T9	70.231753	-148.455144	12.5909	8.4142
21-23	2021-07-23	7061-7063	7060	T9	70.2318	-148.4563	12.2986	8.1217
21-24	2021-07-24	7068-7071	7072	T9	70.231869	-148.456803	12.4553	8.2782
21-25	2021-07-24	7080-7084	7085	T7	70.230069	-148.446767	12.0616	7.8896
21-26	2021-07-24	7086-7089	7090-7102	T7	70.230244	-148.446403	12.034	7.8616
21-27	2021-07-24	7104-7107	7103	T7	70.230131	-148.445822	12.1562	7.984
21-28	2021-07-24	7109-7112	7115	T7	70.230556	-148.443939	12.0756	7.9027
21-29	2021-07-24	7120-7122	7123	T7	70.230547	-148.443275	12.1631	7.9903
21-30	2021-07-25	7126-7128	7129	T7	70.230608	-148.4433	12.2942	8.1212
21-31	2021-07-25	7148-7151	7164	T7	70.230475	-148.442717	12.0191	7.8465
21-32	2021-07-25	7152-7155	7156	T7	70.230614	-148.442778	12.0664	7.8935
21-33	2021-07-26	7166-7169	7170	T7	70.230664	-148.443033	12.079	7.9059
21-34	2021-07-26	7178-7180	7181	T7	70.230614	-148.442622	12.2966	8.1237
21-35	2021-07-26	7182-7185	7186	T7	70.230592	-148.443503	12.0024	7.8294

Table A4.3 (continued)

21-33 (IMG 7170.jpg)

21-34 (IMG 7181.jpg)

Table A4.4. Photographs of 2021 NIRPO terrestrial plot landscapes. (Photos: A.L. Breen)

70

 Table A4.5. Codes for categorical and scalar site variables used in the description of environmental characteristics.

Code	Categorical site variables
Surfici	al Geology (Parent Material)
1	Unconsolidated marine deposits
1.1	Marine sands and gravels
1.2	Marine silts and clays
2	Unconsolidated eolian deposits (deposited by wind)
2.1	Eolian sands
2.2	Eolian silts (loess)
3	Eluvial deposits (deposited by in situ weathering and gravity)
3.1	Frost shattered bedrock
4	Colluvial deposits (slope deposits, derived from a combination of gravity and alluvial processes)
4.1	Hillslope colluvium
4.2	Talus
4.3	Solifluction deposits
4.4	Basin colluvium
5	Lacustrine deposits (lake deposits)
5.1	5 Organic lacustrine deposits
5.2	5 Mineral lacustrine deposits
6	Alluvial deposits (deposited by rivers and streams)
6.1	Alluvial sands and gravels
6.2	Alluvial silts
7	Glacial deposits
7.1	Glacial till
7.2	Glacio-marine sediments
7.3	Glacio-fluvial sediments
8	Bedrock
8.1	Sedimentary rocks and metamorphosed sedimentary rocks
8.1.2	Sedimentary and metamorphic rocks derived from course grained sediments of mixed mineralogy: conglomerates and breccias
8.1.3	Sedimentary and metamorphic rocks derived from quartz-rich sedi- ments: sandstones, quartzites, cherts
8.1.4	Sedimentary and metamorphic rocks derived from fine grained silts and clavs: siltstones, clavstones, mudstones, shales
8.1.5	Sedimentary and metamorphic rocks derived from carbonate sedi- ments: limestone, dolomite, marlstone, marble
8.2	Igneous and metamorphosed igneous rocks
8.2.1	Felsic igneous rocks (rich in Si, Al): obsidian pumice, rhyolite, granite, pegmatite, gneiss
8.2.2	Mafic igneous rocks (rich in Fe, Mg): basaltic glass, scoria, basalt, diabase, gabbro
8.2.3	Ultramafic igneous rocks (extremely rich in Fe, Mg and often other metaliferous minerals Co, Ni, Ch), peridotite, dunite, serpentine, olivine, hornblende, pyroxene
Landfo	orms
1	Hills and mountains
2	Plateaus
3	Plains
3.1	Coastal plain
3.1.1	Flat thaw-lake plain
3.1.1.1	Thaw lake
3.1.1.2	Drained thaw-lake basin
3.1.1.3	Primary (residual) surface unaffected by thaw-lake processes
3.1.2	Hilly coastal plain
Тород	raphic Position
1	Flat elevated plain (includes plateaus, elevated river terraces)
2	Hill crest
3	Shoulder
4	Backslope
5	Foot slope (includes toeslopes)
6	Flat plain
7	Riparian zone (includes active floodplains, drainage channels, water
	tracks, avalanche tracks)

Code	Categorical site variables
8	Lake or pond
Surfici	al Geomorphology
1	Lowland features
1.1	Lake and pond
1.2	Drained lake basin
1.2	Thermokarst pits or ponds
1.3	Flat featureless wetland, < 20% frost scars or hummocks
1.4	Strangmoor or aligned hummocks or disjunct polygon rims
1.5	Wetland hummocks
1.6	Lowland frost boils, non-sorted polygons, often with rings
1.7	Lowland ice-wedge polygons
1.7.1	Low-centered polygons
1.7.2	High-centered, flat-centered, or transitional polygons
1.7.3	Mixed high- and low-centered polygons
1.8	Palsas
1.9	Pingos
2	Upland features (interfluves)
2.1	Featureless upland or slope, < 20% frost scars or hummocks
2.2	Turf hummocks (mainly snowbeds)
2.3	Upland frost scars, sometimes forming earth mounds
2.4	Gelifluction features (including solifluction terraces)
2.5	Sorted and non-sorted stripes or hummocks
2.6	Gently rolling or irregular microrelief
2.7	Stoney hill slope or crest
3	Riparian, water-track, or stream features
3.1	Stream or river active floodplain
3.2	Stream or river inactive or stabilized floodplain
3.3	Stream or river terrace or bluff
3.4	Well-developed hillslope water tracks, small streams > 50 cm deep
3.5	Poorly developed hillslope water tracks, channels < 50 cm deep
Anima	i ana Human Disturbance (type)
1	No sign
<u>ו</u>	
2	
<u>,</u>	Goose tracks scat feathers and/or grazing
5	Squirral mounds
6	Vole tracks & scat
7	Vehicle tracks
8	Wind erosion
9	Swap grazing
10	Owl pellets
Micror	elief
1	Frost-scar element
2	Inter-frost scar element
3	Strang, disjunct polygon rims (S)
4	Flat featureless or interhummock area (F)
5	Polygon center (C)
5.1	Low-centered-polygon basin (LC)
5.2	High-centered, flat-centered, or transitional polygon center (HC)
6	Polygon trough (T)
7	Low-centered-polygon rim (R)
8	Stripe element
9	Inter-stripe element
10	Point bar (raised element)
11	Slough (wet element)
12	Non-sorted polygon ring of tussocks
13	Lake or pond (P)
	Continued on next page

Table A4.5 (continued)

Code	Categorical site variables
Micror	elief (continued)
14	Bird mound (B)
15	Hummock (H)
16	Reticulate pattern (RP)

Code	Scalar site variables
Estima	ted relative surface age (applies only to NIRPO site)
1	Youngest (flat with few disjunct polygon rims or hummocks)
2	Young (flat with disjunct polygon rims or hummocks)
3	Intermediate (low-centered ice-wedge polygons with no or little thermokarst in polygon troughs)
4	Old (low-centered ice-wedge polygons with thermokarst in polygon troughs
5	Oldest (high-, flat-, or transitional ice-wedge polygons with extensive thermokarst in polygon troughs)
Site Mo	oisture (modified from Komárková 1983)
1	Extremely xeric - almost no moisture; no plant growth
2	Very xeric - very little moisture; dry sand dunes
3	Xeric - little moisture; stabilized sand dunes, dry ridge tops
4	Subxeric - noticeable moisture; well-drained slopes, ridges
5	Subxeric to mesic - slightly moist site, flat to gently sloping
6	Mesic - moderate moisture; flat or shallow depressions
7	Mesic to subhygric - considerable late season moisture; saturated soils, depressions
8	Subhygric - very considerable moisture; saturated but with< 5% standing water < 10 cm deep
9	Hygric - much moisture; up to 100% of surface under water 10 to 50 cm deep; lake margins, shallow ponds, streams
10	Hydric - very much moisture; 100% of surface under water 50 to 150 cm deep; lakes, streams
Soil Mo	pisture (from Komárková 1983)
1	Very dry - very little moisture; soil does not stick together
2	Dry - little moisture; soil somewhat sticks together
3	Damp - noticeable moisture; soil sticks together but crumbles
4	Damp to moist - very noticeable moisture; soil clumps
5	Moist - moderate moisture; soil binds but can be broken apart
6	Moist to wet - considerable moisture; soil binds and sticks to fingers

Code	Scalar site variables
7	Wet - considerable moisture; water drops can be squeezed from soil
8	Very wet - much moisture can be squeezed out of soil
9	Saturated - very much moisture; water drips out of soil
10	Very saturated - extreme moisture; soil is more liquid than solid
Estima	ted Snow Duration
1	Snow free all year
2	Snow free most of winter; some snow cover persists after storm but is blown free soon afterward
3	Snow free prior to melt out but with snow
4	Snow free immediately after melt out
5	Snow bank persists 1-2 weeks after melt out
6	Snow bank persists 3-4 weeks after melt out
7	Snow bank persists 4-8 weeks after melt out
8	Snow bank persists 8-12 weeks after melt out
9	Very short snow free period
10	Deep snow all year
Anima	l and Human Disturbance (degree)
0	No sign present
1	Some sign present; no disturbance
2	Minor disturbance or extensive sign
3	Moderate disturbance; small dens or light grazing
4	Major disturbance; multiple dens or noticeable trampling
5	Very major disturbance; very extensive tunneling or large pit
Site Sta	ability
1	Stable
2	Subject to occasional disturbance (e.g. ice-wedge thermokarst in polygon troughs)
3	Subject to prolonged but slow disturbance such as solifluction
4	Annually disturbed (e.g. annual flooding, grazing by geese in polygon troughs)
5	Disturbed more than once annually
Exposi	ire to wind
1	Protected from winds
2	Somewhat protected from winds
3	Moderate exposure to winds
4	Exposed to winds
5	Very exposed to winds

Table A4.6. Habitat type codes and categorical descriptors, after Mucina et al. 2014.

Code	Habitat type description
1	ARCTIC ZONAL TUNDRA
1.01	Polar desert vegetation, subzone A
1.01.1	Polar deserts of the Arctic zone of the Arctic Ocean archipelagos – North America
1.02	Dry and mesic dwarf-shrub and graminoid zonal vegetation on non-acidic base-rich soils
1.02.1	Dry zonal habitats of graminoid tundra and dwarf-shrub heath vegetation of Scotland, Scandinavia, Iceland and the Arctic Ocean islands on base-rich soils, subzones B and C
1.02.2	Mesic zonal habitats of graminoid tundra and dwarf-shrub heath vegetation of Arctic, Western Russia and Siberia on base-rich soils, subzones B, C & D
1.02.3	Graminoid tundra and dwarf-shrub heath vegetation of Greenland and the Arctic North America, subzones B, C & D, (includes for now early-melting base- rich Cassiope-Tomentypnum snowbeds)
1.03	Dry to mesic dwarf-shrub heath on acidic substrates, subzones D and E
1.03.1	Wind-swept dry habitats with prostrate-dwarf-shrub tundra acidic soils, subzones D and E
1.03.2	Zonal habitats with erect-dwarf-shrub tundra acidic soils, subzones D and E (includes for now early-melting acidic Cassiope-Hylocomium snowbeds)
1.03.3	Low-shrub tundra, acidic soils, warmest parts of subzone E
1.03.4	Amphiberingian chionophytic heath communities
1.03.5	Achionophytic heath communities (a vicariant alliance to the Loiseleurio-Arctostaphyllion that occurs in Northern Europe, Greenland as well as the Eastern part of North America)
2	BOREAL MARITIME TUNDRA
2.01	Mesic tall-herb vegetation, boreal maritime tundra
2.01.1	Mesic tall-herb vegetation, boreal maritime tundra
3	INTRAZONAL VEGETATION OF THE ARCTIC ZONE
3.01	Cryoxerophytic steppe and associated shrub on base-rich and (sub)saline substrates in continental Greenland and North America
3.01.1	Cryoxerophytic steppe and associated shrub on base-rich soils
3.01.2	Mesic forb-rich, turfy low Arctic (sub)saline steppe vegetation on base-rich soils
3.02	Arctic rush swards on acidic substrates in arctic region
3.02.1	Wind-swept, chionophobous habitats on acidic soils dominated by rushes
3.03	Grass- & rush-rich, zoogenic habitats, subzones A, B & C
3.03.1	Zoogenic, disturbed habitats, subzones, all sub- zones
4	EXTRAZONAL BOREAL VEGETATION OCCURRING IN THE ARCTIC ZONE
4.01	Boreal coniferous forest enclaves within the tundra zone
4.02	Subalpine and subarctic herb-rich alder and willow scrub and krummholz
4.02.1	Moist to dry alder (<i>Alnus viridis</i>) communities and alder savannas
4.02.2	Willow shrublands along streams, rivers, and water tracks on hill slopes
4.02.3	Herb-rich willow scrub and krummholz, subzones D and E
5	AZONAL ARCTIC HABITATS
5.01	SALT MARSHES, SAND DUNES, SEA CLIFFS
5.01.1	Wet saline coastal marshes
5.01.1.1	Coastal salt-marshes
5.01.2	Tall-grass swards, sand dunes
5.01.2.1	Tall-grass swards, sand dunes (Leymus arenarius), and for now other undescribed saline coastal embryonic communities
5.02	Talus, screes, and boulder fields (see also habitat codes 5.08.1 to 5.08.4 for epilithic moss- and lichen-dominated communities)
5.02.1	Rock-crevices, ledges, faces of rocky cliffs & walls
5.02.1.1	Siliceous rock crevices, ledges, faces and walls
5.02.2	Scree habitats and course alluvium
5.02.2.1	Base-rich and neutral screes and moraines
5.02.2.2	Herb-rich snow-beds, stabilized course calcareous soils
5.02.2.3	Herb-rich vegetation, damp coarse gravels, siliceous substrates of Iceland
5.02.2.4	Ruderal riparian floodplain and terrace vegetation (Epilobium latifolium)
5.03	Snowbeds and wet cold frost-active soils
5.03.1	Late-melting snowbeds and wet cold frost active soils
5.03.1.1	Prostrate dwarf-shrub snowbeds on acidic siliceous substrates
5.03.1.2	Wet late-melting snowbeds and frost boils, cold acidic fine-grained soils
5.03.1.3	Amphiberingian late-melting snowbed communities
5.03.1.4	Early melting snowbed communities of the Alasko-Yukonian phytogeographical sector
5.04	Springs
5.04.1	Cold oligotrophic springs in the boreal and arctic zones of northern Europe
5.05	Fresh water bodies
5.05.1	Aquatic rooted floating or submerged macrophyte vegetation of meso-eutrophic water
5.05.1.1	Aquatic forb marshes
5.05.2	Pond and lake margins with aquatic grasses
5.05.2.1	Aquatic grass marshes

Table A4.6 (continued)

Code	Habitat type description
5.06	Mires (wetlands)
5.06.1	Fens, base-rich wetlands
5.06.1.1	Sedge fens on calcareous mineral substrates
5.06.1.2	Sedge-brown-moss fens on peats and peaty mineral soils
5.06.1.3	Moist to wet coastal sedge-grass tundra calcareous slightly saline soils (Carex stans-Saxifraga cernua, Dupontia fisheri)
5.06.1.4	Poor fens, slightly acidic organic soils (sedge-dwarf-shrub-Sphagnum)
5.06.1.5	Wet acidic sedge forb mires of Aleutian Islands
5.06.1.6	Moist to wet grassy meadows (Calamagrostis canadensis, Polemonium acutiflorum, Potentilla palustris)
5.06.2	Bogs, wetlands on acidic ombrotrophic soils
5.06.2.1	Tussock tundra (Eriophorum vaginatum)
5.06.2.2	Dwarf-shrub and peat-moss raised bog vegetation in the boreal and Arctic zones
5.07	Riparian shrublands and gallery forests
5.07.1	Riparian habitats, willow (Salix) shrublands and poplar (Populus) forests
5.07.1.1	Floodplains, springs, aufeis deposits and warm south facing slopes with balsam poplar (Populus balsamifera)
5.08	Bryophyte and lichen vegetation
5.08.1	Bryophyte communities on sunny exposed siliceous rocks, boulders and screes
5.08.2	Bryophyte communities on exposed limestone rocks and screes
5.08.3	Ombryophilous lichen communities of siliceous rock surfaces
5.08.4	Mainly crustose lichen communities on moderately to highly nutrient-rich limestone substrates
5.08.5	Bryophyte and lichen vegetation on dry acid to subneutral, silty-sand and gravelly soils
5.08.6	Bryophyte and lichen vegetation on subneutral and
5.09	Anthropogenic and ruderal vegetation
5.09.1	Human-disturbed habitats in the subarctic and Arctic zones of Russia, Siberia and North America
5.09.1.1	Ruderal vegetation of natural disturbances (e.g., lake bluff erosion)

Code	Vegetation type description
	vegetation type description
DAT TONL D1	Dry Drygs integrifalia. Caray rynastris. Ovytsonis nigrassons. Locanora anihryon dworf shruh, srystosa lisbon tyndro
 	Dry Dryds integritolia, Carex Tapestris, Oxytropis nigrescens, Lecanora epioryon dwarf shrub, crustose lichen tundra
D2	Dry Dryas integritoria, saxinaga oppositionia, Lecanora epolyon dwali -sinab, crustose-inchen tandra
B3	Dry saxinraga oppositiona, Juncus orgiumis forb, biological soil crust barren
B16	Dry Puccinellia angustata, P. andersonii, Salix ovalitoila, S. lanata graminoid, dwart-shrub barren (dry saline disturbed areas near roads)
BI/	Dry Dryas integritolia, saxiffaga oppositifolia, Huiteniella Integritolia, Carex capillaris prostrate-snrub, nerb tundra (ary dust-disturbed tundra)
MOIST TU	NDRA (U)
U2	Moist Eriophorum vaginatum, Dryas integrifolia, Tomentypnum nitens, Thamnolia subuliformis tussock-graminoid, prostrate dwarf-shrub, moss, lichen tundra
U3	Moist Eriophorum angustifolium, Dryas integrifolia, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf-shrub, moss, lichen tundra
U3d	Disturbed version of type U3
U4	Moist Eriophorum angustifolium, Dryas integrifolia, Tomentypnum nitens graminoid, dwarf-shrub, moss tundra
U4d	Disturbed version of type U4
U10	Moist Festuca baffinensis, Papaver macounii, Ranunculus pedatifidus forb, grass tundra
U17	Moist version of B17 (Carex scirpidea, Dryas integrifolia, Oxytropis borealis, Chrysanthemum integrifolium)
WET TUNE	DRA (M)
M2	Wet Carex aquatilis, Drepanocladus brevifolius sedge, moss tundra
M2d	Disturbed version of type M2
M4	Wet Carex aquatilis, Scorpidium scropioides sedge, moss tundra
M4/E1	Transitional wet to aquatic Carex aquatilis, Scorpidium scorpioides graminoid, moss tundra
M10	Wet Carex aquatilis, Eriophorum angustifolium, Dupontia fisheri graminoid tundra (coastal wet saline graminoid tundra)
M10d	Disturbed version of type M10
AQUATIC	/EGETATION (E, W)
E1	Aquatic Carex aquatilis sedge marsh (CARAQU)
E1d	Disturbed version of type E1
E2	Aquatic Arctophila fulva grass marsh
E3	Aquatic Scorpidium scorpioides moss tundra (SCOSCO)
E5	Aquatic Calliergon richardsonii moss tundra (CALGIG)
E6	Aquatic Hippurus vulgaris forb, moss tundra (HIPVUL)
W	Unvegetated water

Table A4.7. Vegetation type codes and categorical descriptors based on site moisture, dominant plant species, growth forms, and physiognomy for Prudhoe Bay, Alaska (Modified from Walker 1980, 1985; Watson-Cook 2022).

 Table A4.8. Plant species list for 2021 NIRPO terrestrial vegetation plots, July 2021. Field name: Taxon used in the field. Accepted name:

 Accepted taxon name following the nomenclature of the Panarctic Species List (PASL; v. 2019). Growth form: Plant growth form (PASL; v. 2019).

 Taxon code: 6-letter code based on field name.

Field name	Accepted name	Taxon code	Plant growth form
Abietinella abietina	Abietinella abietina (Hedw.) Fleisch.	ABIABI	Pleurocarpous moss
Aneura pinguis	Aneura pinguis (L.) Dumort.	ANEPIN	Thalloid liverwort
Arctagrostis latifolia	Arctagrostis latifolia (R. Br.) Griseb.	ARCLAT	Grass
Aulacomnium palustre	Aulacomnium palustre (Hedw.) Schwaegr.	AULPAL	Pleurocarpous moss
Blepharostoma trichophyllum	Blepharostoma trichophyllum (Linn.) Dumortier	BLETRI	Leafy liverwort
Brachythecium sp.	Brachythecium sp.	BRACSP	Pleurocarpous moss
Bryum pseudotriquetrum	Bryum pseudotriquetrum (Hedw.) P.G. Gaertn., B. Mey. & Scherb.	BRYPSE	Acrocarpous moss
Bryum sp.	Bryum sp.	BRYUSP	Acrocarpous moss
Calliergon richardsonii	Calliergon richardsonii (Mitt.) Kindb.	CALGIG	Pleurocarpous moss
Calliergon richardsonii	Calliergon richardsonii (Mitt.) Kindb.	CALRIC	Pleurocarpous moss
Calliergon sp.	Calliergon sp.	CALISP	Pleurocarpous moss
Campylium sp.	Campylium sp.	CAMPSP	Pleurocarpous moss
Campylium stellatum	Campylium stellatum (Hedw.) C. Jens.	CAMSTE	Pleurocarpous moss
Cardamine diaitata	Cardamine diaitata Richardson	CARDIG	Low erect forb
Carex aquatilis	Carex aquatilis Wahlenb.	CARAOU	Wet to moist nontussock sedge
Carex atrofusca	Carex atrofusca Schkuhr	CARATR	Wet to moist nontussock sedge
Carex biaelowii	Carex biaelowii Torr.	CARBIG	Wet to moist nontussock sedge
Carex marina	Carex marina Dewey	CARHEL	Wet to moist nontussock sedge
Carex membranacea	Carex membranacea Hook.	CARMEM	Wet to moist nontussock sedge
Carex rotundata	Carex rotundata Wahlenb.	CARROT	Wet to moist nontussock sedge
Carex saxatilis ssp. laxa	Carex saxatilis L.	CARSAX	Wet to moist nontussock sedge
Carex scirpoidea	Carex scirpoidea Michx.	CARSCI	Wet to moist nontussock sedge
Carex sp.	Carex sp.	CARESP	Sedge
Cassiope tetragona	Cassione tetraaona (L.) D. Don	CASTET	Evergreen or summer green dwarf shrub
Catoscopium niaritum	Catoscopium niaritum (Hedw.) Brid.	CATNIG	Acrocarpous moss
Cetraria islandica	Cetraria islandica (L.) Ach	CETISI	Fruticose lichen
Cetraria laeviaata	Cetraria Igevigata Bass	CETLAE	Fruticose lichen
Cinclidium arcticum	Cinclidium arcticum Schimp	CINARC	Acrocarpous moss
Cinclidium latifolium	Cinclidium latifolium Lindb.	CINLAT	Acrocarpous moss
Cinclidium sp.	Cinclidium sp.	CINCSP	Acrocarpous moss
Cinclidium styaium	Cinclidium styaium Swartz	CINSTY	Acrocarpous moss
Cirriphyllum cirrosum	Cirriphyllum cirrosum (Schwaegr.) Grout	CIRCIR	Pleurocarpous moss
Cladonia pyxidata	Cladonia pyxidata (L.) Hoffm.	CLAPYX	Fruticose lichen
Dactyling arctica	Dactyling arctica (Richardson) Nyl.	DACARC	Fruticose lichen
Dactylina madreporiformis	Allocetraria madreporiformis (Ach.) Karnefelt & Thell	DACMAD	Fruticose lichen
Dicranum elonaatum	Dicranum elonaatum Schleich, ex Schwaegr.	DICELO	Acrocarpous moss
Distichium capillaceum	Distichium capillaceum (Hedw.) Bruch & Schimp.	DISCAP	Acrocarpous moss
Distichium inclinatum	Distichium inclinatum (Hedw.) B.S.G.	DISINC	Acrocarpous moss
Ditrichum flexicaule	Ditrichum flexicaule (Schwaegr.) Hampe	DITFLE	Acrocarpous moss
Drepanocladus brevifolius	Drepanocladus brevifolius (Lindb.) Warnst.	DREBRE	Pleurocarpous moss
Drepanocladus sp.	Drepanocladus sp.	DREPSP	Pleurocarpous moss
Drvas integrifolia	Drvas integrifolia Vahl	DRYINT	Evergreen or summer green dwarf shrub
Dupontia fisheri	Dupontia fisheri R. Br.	DUPFIS	Grass
Encalvpta rhabdocarpa	Encalvpta rhaptocarpa Schwaegr.	ENCRHA	Acrocarpous moss
Encalypta sp.	Encalvpta sp.	ENCASP	Acrocarpous moss
Equisetum scirpoides	Equisetum scirpoides Michx.	EOUSCI	Horsetail
Equisetum variegatum	Equisetum variegatum Schleich, ex Weber & Mohr	EOUVAR	Horsetail
Eriophorum anaustifolium s. l.	Eriophorum anaustifolium s.l. Honck.	ERIANG	Wet to moist nontussock sedge
Eriophorum scheuchzeri	Eriophorum scheuchzeri Hoppe	ERISCH	Wet to moist nontussock sedge
Eutrema edwardsii	Eutrema edwardsii R. Br.	EUTEDW	Low erect forb
Fissidens sp.	Fissidens sp.	FISSSP	Acrocarpous moss
Flavocetraria cucullata	Flavocetraria cucullata (Bell.) Karnefelt & Thell	FLACUC	Fruticose lichen
Flavocetraria nivalis	Flavocetraria nivalis (L.) Karnefelt & Thell	FLANIV	Fruticose lichen
Hamatocaulis vernicosus	Hamatocaulis vernicosus (Mitt.) Hedenas	HAMVER	Pleurocarpous moss
Hierochloe pauciflora	Hierochloe pauciflora R. Br.	HIEPAU	Grass
Hypnum procerrimum	Hypnum procerrimum Molendo	HYPPRO	Pleurocarpous moss
Hypnum species	Hypnum sp.	HYPNSP	Pleurocarpous moss

Table A4.8 (continued)

Field name	Accepted name	Taxon code	Plant growth form	
Juncus triglumis	Juncus triglumis L.	JUNTRI	Rush	
Lecanora epibryon	Lecanora epibryon (Ach.) Ach.	LECEPI	Crustose lichen	
Lophozia sp.	Lophozia sp.	LOPHSP	Leafy liverwort	
Masonhalea richardsonii	Masonhalea richardsonii (Hook.) Karnefelt	MASRIC	Foliose lichen	
Meesia triquetra	Meesia triquetra (H. Richter) Aongstr.	MEETRI	Acrocarpous moss	
Meesia uliginosa	Meesia uliginosa Hedw.	MEEULI	Acrocarpous moss	
Minuartia arctica	Minuartia arctica (Steven ex Ser.) Graebn.	MINARC	Cushion, mat, or rosette forb	
Mnium sp.	Mnium sp.	MNIUSP	Acrocarpous moss	
Nostoc commune	Nostoc commune Vaucher ex Bornet & Flahault	NOSCOM	Alga and cyanobacteria	
Nostoc sp.	Nostoc sp.	NOSTSP	Alga	
Orthothecium chryseum	Orthothecium chryseum (Schwaegr.) B.S.G.	ORTCHR	Pleurocarpous moss	
Papaver macounii	Papaver macounii Greene	PAPMAC	Low erect forb	
Pedicularis albolabiata	Pedicularis albolabiata (Hultén) Kozhevn.	PEDALB	Low erect forb	
Pedicularis capitata	Pedicularis capitata Adams	PEDCAP	Low erect forb	
Pedicularis lanata	Pedicularis lanata Willd. ex Cham. & Schltdl.	PEDLAN	Low erect forb	
Peltigera aphthosa	Peltigera aphthosa (L.) Willd.	PELAPH	Foliose lichen	
Peltigera species	Peltigera sp.	PELTSP	Foliose lichen	
Philonotis fontana	Philonotis fontana (Hedw.) Brid.	PHIFON	Acrocarpous moss	
Polygonum viviparum	Bistorta vivipara (L.) Delarbre	POLVIV	Low erect forb	
Pyrola secunda	Orthilia secunda (L.) House	PYRSEC	Low erect forb	
Salix arctica	Salix arctica Pall.	SALARC	Deciduous dwarf shrub	
Salix lanata s. l.	Salix lanata L.	SALLAN	Deciduous dwarf shrub	
Salix ovalifolia	Salix ovalifolia Trautv.	SALOVA	Deciduous dwarf shrub	
Salix reticulata	Salix reticulata L.	SALRET	Deciduous dwarf shrub	
Sanionia uncinata	Sanionia uncinata (Hedw.) Loeske	SANUNC	Pleurocarpous moss	
Saxifraga hirculus	Saxifraga hirculus L.	SAXHIR	Cushion, mat and rosette forb	
Saxifraga oppositifolia	Saxifraga oppositifolia L.	SAXOPP	Cushion, mat and rosette forb	
Scorpidium scorpioides	Scorpidium scorpioides (Hedw.) Limpr.	SCOSCO	Pleurocarpous moss	
Senecio atropurpureus ssp. frigidus	Tephroseris frigida (Richardson) Holub	SENATRFRI	Low erect forb	
Solorina sp.	Solorina sp.	SOLOSP	Foliose lichen	
Stereocaulon alpinum	Stereocaulon alpinum Laur.	STEALP	Fruticose lichen	
Stereocaulon species	Stereocaulon sp.	STERSP	Fruticose lichen	
Thamnolia subuliformis s. l.	Thamnolia subuliformis s.l. (Sw.) Schaer.	THASUB	Fruticose lichen	
Tomentypnum nitens	Tomentypnum nitens (Hedw.) Loeske	TOMNIT	Pleurocarpous moss	
Unknown bryophytes	Unknown bryophyte (including mosses and liverworts)	UNKBRY	Bryophyte	
Unknown crustose lichen	Unknown crustose lichen	UNKCRU Crustose lichen		
Unknown dicot	Unknown/unidentified forb	UNKDIC	Forb	
Unknown graminoid	Unknown graminoid	UNKGRAM	Graminoid	

Table A4.9. Summary of plant community and habitat information for 2021 NIRPO terrestrial vegetation plots, Prudhoe Bay, July-August 2021. **Vegetation type:** Modified from Walker 1980, 1985; Watson-Cook 2022. See Table A4.7. **Habitat type**: After Mucina et al. 2014. See Table A4.6. **Microrelief**: See Table A4.7 for code definitions.

Plot ID	Trans- ect	Vegeta- tion type	Habitat type	Micro- relief	Field name (description) of plant community
21-01	T8	M2	5.06.1.2	F	Wet Eriophorum angustifolium, Carex aquatilis, Drepanocladus brevifolius graminoid, moss tundra
21-02	T8	M2	5.06.1.2	F	Wet Carex aquatilis, Drepanocladus brevifolius graminoid, moss tundra
21-03	T8	M4	5.06.1.2	F	Wet Eriophorum angustifolium, Scorpidium scorpioides graminoid, moss tundra
21-04	T8	M4	5.06.1.2	F	Wet Eriophorum angustifolium, Scorpidium scorpioides graminoid, moss tundra
21-05	T6	U3	1.02.2	HC	Moist Eriophorum triste, Dryas integrifolium, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf-shrub, moss, lichen tundra
21-06	T6	U3	1.02.2	HC	Moist Eriophorum triste, Dryas integrifolium, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf-shrub, moss, lichen tundra
21-07	T6	U4	1.02.2	HC	Moist Eriophorum triste, Dryas integrifolium, Tomentypnum nitens, graminoid, prostrate dwarf-shrub, moss tundra
21-08	T6	U4	1.02.2	HC	Moist Eriophorum triste, Salix lanata, Drepanocladus brevifolius, graminoid, dwarf-shrub, moss tundra
21-09	T6	U4	1.02.2	HC	Moist Eriophorum triste, Salix lanata, Tomentypnum nitens, graminoid, dwarf-shrub, moss tundra
21-10	T6	U3	NA	HC	Moist Eriophorum triste, Dryas integrifolium, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf-shrub, moss, lichen tundra
21-11	T6	M2	5.06.1.2	Т	Wet Eriophorum angustifolium, Salix arctica, Drepanocladus brevifolius sedge, moss tundra
21-12	T6	U4	1.02.2	Т	Moist Eriophorum triste, Salix lanata, Hamatocaulis vernicosus graminoid, dwarf-shrub, moss tundra
21-13	T6	U4	5.06.1.2	Т	Moist Eriophorum angustifolium, Carex membranacea, Salix arctica, Drepanocladus brevifolius sedge, moss tundra
21-14	T6	M2	5.06.1.2	Т	Wet Eriophorum angustifolium, Dupontia fisheri, Drepanocladus brevifolius graminoid, moss tundra
21-15	T6	U4	1.02.2	Т	Moist Eriophorum triste, Salix arctica, Tomentypnum nitens graminoid, dwarf-shrub, moss tundra
21-16	T6	M2	5.06.1.2	Т	Wet Eriophorum angustifolium, Salix arctica, Drepanocladus brevifolius graminoid, moss tundra
21-17	T8	U4	1.02.2	S	Moist Carex aquatilis, Eriophorum triste, Salix arctica, Tomentypnum nitens graminoid, dwarf-shrub, moss tundra
21-18	Т8	U4	1.02.2	S	Moist Carex aquatilis, Eriophorum triste, Dryas integrifolia, Drepanocladus brevifolius graminoid, dwarf-shrub, moss tundra
21-19	Т9	M2	5.06.1.2	HC	Wet Eriophorum angustifolium, Drepanocladus brevifolius graminoid, moss tundra
21-20	Т9	U3	1.02.2	HC	Moist Carex membranacea, Dryas integrifolia, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf-shrub, moss, lichen tundra
21-21	Т9	U3	1.02.2	HC	Moist Dryas integrifolia, Carex membranacea, Tomentypnum nitens, Thamnolia subuliformis prostrate dwarf-shrub, graminoid, moss, lichen tundra
21-22	Т9	U3	1.02.2	HC	Moist Eriophorum triste, Dryas integrifolia, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf- shrub, moss, lichen tundra
21-23	Т9	M2	5.06.1.2	HC	Wet Eriophorum angustifolium, Drepanocladus brevifolius graminoid, moss tundra
21-24	Т9	U3	1.02.2	S	Moist Eriophorum triste, Dryas integrifolia, Tomentypnum nitens, Thamnolia subuliformis graminoid, prostrate dwarf- shrub, moss, lichen tundra
21-25	T7	M4-MARL	5.06.1.1	Р	Aquatic Carex aquatilis marl tundra
21-26	T7	M4-MARL	5.06.1.1	Р	Aquatic Carex aquatilis marl tundra
21-27	T7	M2	5.06.1.2	LC	Wet Eriophorum angustifolium, Drepanocladus brevifolius graminoid, moss tundra
21-28	T7	M4	5.06.1.2	Т	Aquatic Eriophorum angustifolium, Carex aquatilis, Scorpidium scropioides graminoid, moss tundra
21-29	T7	M2	5.06.1.2	LC	Wet Eriophorum angustifolium, Carex aquatilis, Drepanocladus brevifolius graminoid, moss tundra
21-30	T7	U4	1.02.2	LC	Moist Eriophorum triste, Salix reticulata, Dryas integrifolia, Tomentypnum nitens graminoid, prostrate dwarf-shrub, moss tundra
21-31	T7	M4/E1	5.06.1.2	Т	Aquatic Carex aquatilis, Calliergon giganteum graminoid, moss tundra
21-32	T7	M4	5.06.1.2	Т	Aquatic Carex aquatilis, Drepanocladus sp. graminoid, moss tundra
21-33	T7	M4	5.06.1.2	LC	Aquatic Carex aquatilis, Eriophorum angustifolium, Drepanocladus brevifolius, Scorpidium scorpioides graminoid, moss tundra
21-34	T7	U4	1.02.2	LC	Moist Eriophorum triste, Salix reticulata, Dryas integrifolia, Tomentypnum nitens graminoid, prostrate dwarf-shrub, moss tundra
21-35	T7	M4/E1	5.06.1.2	Т	Aquatic Carex aquatilis, Calliergon giganteum graminoid, moss tundra

Table A4.10. Environmental site factor and plant growth-form data for 2021 NIRPO terrestrial vegetation plots, Prudhoe Bay, July-August2021. Site factors: See Table A4.5 for definitions of categorical and scalar variables. Habitat type: After Mucina et al. 2014. See Table A4.6.Vegetation type: Modified from Walker 1980, 1985; Watson-Cook 2022. See Table A4.7.

Plot ID	21-01	21-02	21-03	21-04	21-05	21-06	21-07	21-08	21-09	21-10	21-11	21-12
SITE FACTORS: CATEGORICAL VARIABLES (SEE TABLE A4.5)												
Surficial geology / parent material	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1
Landform	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3
Topographic position	6	6	6	6	6	6	6	6	6	6	6	6
Surficial geomorphology	1.4	1.4	1.3	1.3	1.7.2	1.7.2	1.7.2	1.7.2	1.7.2	1.7.2	1.7.2	1.7.2
Microrelief	4	4	4	4	5.2	5.2	5.2	5.2	5.2	5.2	6	6
Disturbance type	4	4, 1	0	0	4, 1	1	0	0	1	0	0	1
SITE FACTORS: SCALAR VARIABLES (SEE TAB	LE A4.5)											
Estimated relative surface age (scalar, 1–5)	2	2	1	1	5	5	5	5	5	5	5	5
Site moisture (scalar, 1–10)	8	8	9	9	5	5	6	6	6	5	8	6
Soil moisture (scalar, 1–10)	9	9	9	9	5	5	6	6	6	5	9	7
Estimated snow duration (scalar, 1–10)	4	4	4	4	4	4	4	4	4	4	5	5
Animal and human disturbance degree (scalar, 0–5)	1	1	0	0	1	1	0	0	1	0	0	1
Site stability (scalar, 1–5)	1	1	1	1	2	2	2	2	2	2	4	4
Exposure to wind (scalar, 1-5)	3	3	3	3	3	3	3	3	3	3	2	2
SITE FACTORS: CONTINUOUS VARIABLES												
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	7	5	2	2	10	5	5	5	5	7	3	7
Thaw depth (cm, mean of 5 measurements), July 19-26, 2021	33.4	38.2	37.8	34	31.7	32.3	26.5	30.75	34.5	29	36.2	29
Thaw depth (cm, mean of 5 measurements), Aug. 26-31, 2021	42.6	50.2	43.8	43.4	45.4	48	40.2	42.4	48.2	43.8	44.2	42
Water depth (cm, mean of 5 measurements), July 19-26, 2021	1	0	1	1	0	0	0	0	0	0	0	0
Water depth (cm, mean of 5 measurements), Aug. 26–31, 2021	0.8	0.6	4.8	3.8	0	0	0	0	0	0	2.4	0
Herbaceous layer height, including erect dwarf shrubs <10 CM (cm)	10	10	20	20	10	5	10	8	12	12	15	13
Live moss thickness (cm)	2	2	1	1	4	2	2	3	2	3	4	2
Total organic (+ a horizon) thickness (cm)	24	25	25	21	3	3+7 (A horizon)	8	20	16	17	26	22
COVER OF PLANT GROWTH FORMS AND OT	HER VARI	ABLES (% COVE	2)								
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0.1	0	0	0	0	0	1	15	2	0	0	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	0.1	0.1	0	0	19	23	18	3	8	35	4	9
Evergreen shrubs (live + attached dead)	0.1	0	0	0	16	21	15	1	6	30	1	1
Deciduous shrubs (live + attached dead)	2	0.1	0	0	3	2	4	17	5	5	3	7
Erect forbs (live + attached dead)	0.1	0.1	0	0	0.1	1	0	0.1	0	0.1	0.1	0
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0.1	0	0	0	0	0	0
Non-tussock graminoids (live + attached dead)	50	55	55	61	20	11	60	80	26	17	75	81
Tussock graminoids (live + attached dead)	0	0	0	0	20	0	0	0	0	0	0	0
Horsetails (live + attached dead)	1	2	0.1	0.1	0	0.1	0	0	0.1	0	0.1	0.1
Foliose lichens	0.1	0.1	0	0	0.1	0	0	0	0	0	0	0
Fruticose lichens	0	0	0	0	0	8	0	0	0	6	0	0
Crustose lichens	0	0	0	0	10	0.1	0	0	0	0.1	0	0
Pleurocarpous bryophytes + leafy liverworts	32	55	10	20	0	52	32	31	14	30	42	16
Acrocarpous bryophytes	4	5	0	0	65	5	0.1	1	1	5	1	3
Total bryophytes (mosses + leafy liverworts)	36	60	10	20	75	57	32	32	15	35	43	19
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0	0
Algae	0.1	0	0	0	0	0	0	0	0	0	0	0
Rocks	0	0	0	0	0	0	0	0	0	0	0	0
Bare soil or marl	10	5	60	30	0	0	0	0	0	10	0	0
	5	5	2	10	5	5	10	5	5	10	2	20
VEGETATION CATEGORICAL DESCRIPTORS		F 0 4	F 6 4	F 64	1 00 -	1 00 -	1 00 -	1 00 -	1 00 -		F 6 5 5 5	1.00 -
Habitat type (See Table A4.6)	5.06.1.2	5.06.1.2	5.06.1.2	5.06.1.2	1.02.2	1.02.2	1.02.2	1.02.2	1.02.2	NA	5.06.1.2	1.02.2
vegetation type (See Table A4.7)	M2	M2	M4	M4	U3	U3	U4	U4	U4	U3	M2	04

Table A10 (continued). Terrestrial vegetation plots 21-13 to 21-24.

Plot ID	21-13	21-14	21-15	21-16	21-17	21-18	21-19	21-20	21-21	21-22	21-23	21-24
SITE FACTORS: CATEGORICAL VARIABLES (SE	E TABLE	A4.5)										
Surficial geology / parent material	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1	2.2, 5.1
Landform	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.3	3.1.1.2	3.1.1.2
Topographic position	6	6	6	6	6	6	6	6	6	6	6	6
Surficial geomorphology	1.7.2	1.7.2	1.7.2	1.7.2	1.4	1.4	1.7.2	1.7.2	1.7.2	1.7.2	1.7.2	1.7.1
Microrelief	6	6	6	6	3	3	5.2	5.2	5.2	5.2	5.2	3
Disturbance type	0	0	1	4	4	1, 4	0	1, 3	1	1	4	1
SITE FACTORS: SCALAR VARIABLES (SEE TABL	E A4.5)											
Estimated relative surface age (scalar, 1–5)	5	5	5	5	2	2	3	5	5	5	3	3
Site moisture (scalar, 1–10)	7	8	6	7	6	6	8	5	5	5	8	5
Soil moisture (scalar, 1–10)	8	9	7	9	6	7	8	5	5	5	8	6
Estimated snow duration (scalar, 1–10)	5	5	5	5	4	4	4	4	4	4	4	4
Animal and human disturbance degree (scalar, 0–5)	0	0	1	1	1	1	0	1	2	1	2	1
Site stability (scalar, 1–5)	4	4	4	4	2	2	2	2	2	2	2	2
Exposure to wind (scalar, 1-5)	2	2	2	2	3	3	3	3	3	3	3	3
SITE FACTORS: CONTINUOUS VARIABLES												
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	3	5	5	7	7	5	4	3	3	3	4	5
Thaw depth (cm, mean of 5 measurements), July 19-26, 2021	39.2	37.6	23	40	29.4	30.6	40.3	32.8	34.2	25.4	38.4	33.4
Thaw depth (cm, mean of 5 measurements), Aug. 26-31, 2021	48.4	41	37.8	45.8	46.6	40.4	47.6	41	43	33.2	46	42
Water depth (cm, mean of 5 measurements), July 19-26, 2021	0	0	0	0	0	0	0	0	0	0	0	0
Water depth (cm, mean of 5 measurements), Aug. 26–31, 2021	0.6	9.8	0	2.6	0	0	0.8	0	0	0	0	0
Herbaceous layer height, including erect dwarf shrubs <10 CM (cm)	20	25	10	15	10	10	10	5	5	10	10	8
Live moss thickness (cm)	1	7	3	6	4	2	1	2	2	5	2	3
Total organic (+ a horizon) thickness (cm)	20	19	20	23	23	20	19	1+23 (A horizon)	2+22 (A horizon)	5+18 (A horizon)	20	26
COVER OF PLANT GROWTH FORMS AND OTH	IER VARI	ABLES										
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0.1	0	0	0	0	1	0	0	0	0	1	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	7	1	11	2	5	16	1	61	62	31	1	6
Evergreen shrubs (live + attached dead)	0.1	0	5	4	3	10	0	60	60	25	1	5
Deciduous shrubs (live + attached dead)	7	1	6	2	2	7	1	1	2	1	1	1
Erect forbs (live + attached dead)	0.1	0	1	1	0	1	0.1	2	3	1	0	1
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0.1	0	0.1	0.1	0	0	0.1
Non-tussock graminoids (live + attached dead)	80	88	80	71	75	45	60	15	30	62	51	66
Tussock graminoids (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0
Horsetails (live + attached dead)	0.1	0.1	0.1	0.1	0.1	0.1	2	1	0.1	0.1	2	0.1
Foliose lichens	0	0	0	0	0	0	0	0	0	1	0	0.1
Fruticose lichens	0	0	0	0	0.1	0	0	15	11	5	0	5
Crustose lichens	0	0	0	0	0	0	0	1	1	0	0	0.1
Pleurocarpous bryophytes + leafy liverworts	15	45	57	37	13	20	15	15	50	75	50	45
Acrocarpous bryophytes	7	0	5	3	14	21	8	3	6	6	1	2
Total bryophytes (mosses + leafy liverworts)	22	45	62	40	27	41	23	18	56	81	51	47
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0	0
Algae	0	0	0	0	0	0	0	0	0	0	0	0
Rocks	0	0	0	0	0	0	0	0	0	0	0	0
Bare soil or marl	0	0	0	0	0	0	30	0	0	0	3	0
Litter	5	7	5	5	10	10	5	2	2	7	2	10
VEGETATION CATEGORICAL DESCRIPTORS												
Habitat type (See Table A4.6)	5.06.1.2	5.06.1.2	1.02.2	5.06.1.2	1.02.2	1.02.2	5.06.1.2	1.02.2	1.02.2	1.02.2	5.06.1.2	1.02.2
Vegetation type (See Table A4.7)	U4	M2	U4	M2	U4	U4	M2	U3	U3	U3	M2	U3

Table A4.10 (continued). Terrestrial vegetation plots 21-25 to 21-35.

Plot ID	21-25	21-26	21-27	21-28	21-29	21-30	21-31	21-32	21-33	21-34	21-35
SITE FACTORS: CATEGORICAL VARIABLES (SEE TABLE	A4.5)										
Surficial geology / parent material	5.2	5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2	5.1, 5.2
Landform	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2	3.1.1.2
Topographic position	8	8	6	6	6	6	6	6	6	6	6
Surficial geomorphology	1.1	1.1	1.7.1	1.7.1	1.7.1	1.7.1	1.7.1	1.7.1	1.7.1	1.7.1	1.7.1
Microrelief	13	13	5.1	6	5.1	7	6	6	5.1	7	6
Disturbance type	4	4	4	4	4	1	4	4	4	4, 1	4
SITE FACTORS: SCALAR VARIABLES (SEE TABLE A4.5)											
Estimated relative surface age (scalar, 1–5)	3	3	3	4	4	4	4	4	4	4	4
Site moisture (scalar, 1–10)	9	9	8	9	8	6	9	8	9	6	9
Soil moisture (scalar, 1–10)	10	10	9	9	9	7	10	9	9	7	9
Estimated snow duration (scalar, 1–10)	4	4	4	4	4	4	5	4	5	5	5
Animal and human disturbance degree (scalar, 0–5)	1	1	1	1	1	1	2	2	1	2	2
Site stability (scalar, 1–5)	4	4	2	4	2	4	4	4	2	4	4
Exposure to wind (scalar, 1-5)	3	3	3	2	3	3	3	2	3	3	2
SITE FACTORS: CONTINUOUS VARIABLES											
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	2	2	3	2	3	15	1	4	4	4	1
Thaw depth (cm, mean of 5 measurements), July 19-26, 2021	42.4	44.6	45.2	39.2	43.8	36.2	35.8	36	49.6	40.5	36.6
Thaw depth (cm, mean of 5 measurements), Aug. 26-31, 2021	51	53.2	54.6	47.6	52	50.8	48	45.6	59.2	52	48
Water depth (cm, mean of 5 measurements), July 19-26, 2021	0	0	0	1.5	0.5	0	13.6	1.6	3	0	17.4
Water depth (cm, mean of 5 measurements), Aug. 26–31, 2021	0	0	0	4.2	0	0	15.2	6.4	6.6	0	13.4
Herbaceous layer height, including erect dwarf shrubs <10 CM (cm)	5	5	10	15	20	10	30	20	20	10	30
Live moss thickness (cm)	0	0	1	2	2	4	5	4	3	1	5
Total organic (+ a horizon) thickness (cm)	32	30	25	30	41	44	32	39	38	40	30
COVER OF PLANT GROWTH FORMS AND OTHER VAR	ABLES										
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0	0	0	0	0	1	0	0	0	0.1	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	0	0	0	0	0	31	0	0	0.1	31	0
Evergreen shrubs (live + attached dead)	0	0	0	0	0	20	0	0	0	20	0
Deciduous shrubs (live + attached dead)	0	0	0	0	0	11	0	0	0.1	11	0
Erect forbs (live + attached dead)	0	0	1	0	1	1	0	0	0.1	0.1	0
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0
Non-tussock graminoids (live + attached dead)	8	10	86	45	80	35	45	60	75	35	62
Tussock graminoids (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0
Horsetails (live + attached dead)	0	0	0.1	0.1	2	1	0	0.1	0.1	0.1	0
Foliose lichens	0	0	0	0	0	0	0	0	0	0	0
Fruticose lichens	0	0	0	0	0	0	0	0	0	0	0
Crustose lichens	0	0	0	0	0	0.1	0	0	0	0.1	0
Pleurocarpous bryophytes + leafy liverworts	0	0.1	8	11	40	47	70	55	62	26	25
Acrocarpous bryophytes	0	0	2	5	10	10	10	20	4	40	0
Total bryophytes (mosses + leafy liverworts)	0	0	10	16	50	57	80	75	66	66	25
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0
Algae	0	0	0	0	0	0	0	0	0	0.1	0
Rocks	0	0	0	0	0	0	0	0	0	0	0
Bare soil or marl	100	100	20	20	1	0	0	10	10	0	0
Litter	1	2	5	2	5	10	90	20	20	5	85
VEGETATION CATEGORICAL DESCRIPTORS											
Habitat type (See Table A4.6)	5.06.1.1	5.06.1.1	5.06.1.2	5.06.1.2	5.06.1.2	1.02.2	5.06.1.2	5.06.1.2	5.06.1.2	1.02.2	5.06.1.2
Vegetation type (See Table A4.7)	M4- MARL	M4- MARL	M2	M4	M2	U4	M4/E1	M4	M4	U4	M4/E1

laxon	21-01	21-02	21-03	21-04	21-05	21-06	21-07	21-08	21-09	21-10	11-12	21-12	21-13	21-14	21-15	21-16	21-17	21-18
Abietinella abietina	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0
Aneura pinguis	+	0	0	0	0	0	0	L	0	0	+	0	0	0	0	+	0	0
Arctagrostis latifolia	0	0	0	0	+	-	0	0	0	+	0	0	0	+	+	+	0	0
Aulacomnium palustre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blepharostoma trichophyllum	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0
Brachythecium species	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0
Bryum pseudotriquetrum	0	0	0	0	0	0	0	0	0	0	+	+	0	0	-	0	0	+
Bryum sp.	0	0	0	0	0	0	0	0	+	0	0	0	0	0	-	0	0	0
Calliergon giganteum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calliergon richardsonii	-	-	0	0	0	0	0	0	0	0	0	0	2	0	0	-	0	-
Calliergon sp.	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
Campylium sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
Campylium stellatum	0	0	0	0	0	0	0	0	+	0	-	-	0	-	0	+	0	0
Cardamine digitata	0	0	0	0	-	-	0	0	0	+	0	0	0	0	+	0	0	0
Carex aquatilis	2	m	+	-	0	0	0	0	-	0	+	0	-	0	0	0	m	m
Carex atrofusca	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex bigelowii	0	0	0	0	+	-	0	0	2	+		-	0	0	2	0	0	0
Carex marina	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex membranacea	+	0	0	0	+	0	+	m	+	-	0	0	2	-	0	-	0	0
Carex rotundata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex saxatilis ssp. laxa	0	0	٢	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex scirpoidea	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0
<i>Carex</i> sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	r
Cassiope tetragona	0	0	0	0	+	٦	0	0	0	0	0	0	0	0	+	0	0	0
Catoscopium nigritum	+	٦	0	0	L	0	0	+	0	L	0	L	1	0	1	0	1	1
Cetraria islandica	0	0	0	0	+	+	0	0	0	+	0	0	0	0	0	0	0	0
Cetraria laevigata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cinclidium arcticum	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cinclidium latifolium	+	٦	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0	1
Cinclidium sp.	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0
Cinclidium stygium	0	+	0	0	0	0	0	0	0	0	0	1	+	+	+	+	0	+
Cirriphyllum cirrosum	0	0	0	0	0	0	0	0	+	0	0	0	0	0	L	+	+	1
Cladonia pyxidata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dactylina arctica	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	+	0
Dactylina madreporiformis	0	0	0	0	0	r	0	0	0	0	0	0	0	0	0	0	0	0
Dicranum elongatum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distichium capillaceum	0	+	0	0	+	+	+	+	+	+	2	1	1	0	1	1	1	1
Distichium inclinatum	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0
Ditrichum flexicaule	0	0	0	0	2	-	+	-	+	-	+	0	0	0	0	+	2	2
Drepanocladus brevifolius	m	m	0	0	0	0	0	m	-	0	-	2	-	m	-	2	0	2

Table A4.11a. Percent species cover abundance for 2021 NIRPO terrestrial vegetation plots 21-1 to 21-18, July 2021. Values are Braun-Blanquet cover-abundance scores: r = rare; + = <1% cover; 1 = 1-5% cover; 2 = 6-25% cover; 3 = 26-50% cover; 4 = 51-75% cover; 5 = 76-100% cover.

Taxon	21-01	21-02	21-03	21-04	21-05	21-06	21-07	21-08	21-09	21-10	21-11	21-12	21-13	21-14	21-15	21-16	21-17	21-18
Drepanocladus sp.	3	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
Dryas integrifolia	L	0	0	0	2	2	2	1	1	S	٦	-	+	0	1	+	٦	2
Dupontia fisheri	0	0	0	0	0	0	0	0	0	0	+	0	0	-	0	+	0	0
Encalypta rhabdocarpa	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0
Encalypta sp.	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0
Equisetum scirpoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Equisetum variegatum	-	-	+	0	+	+	+	+	+	0	+	+	+	+	+	+	-	-
Eriophorum angustifolium s. l.	m	2	m	4	2	-	4	æ	2	ĸ	4	5	4	4	4	4	-	2
Eriophorum scheuchzeri	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eutrema edwardsii	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0
Fissidens species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Flavocetraria cucullata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flavocetraria nivalis	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Hamatocaulis vernicosus	0	0	0	0	0	0	0	0	0	0	2	+	+	-	0	2	0	0
Hierochloe pauciflora	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0	0
Hypnum procerrimum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hypnum species	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncus triglumis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lecanora epibryon	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0
Lophozia sp.	0	0	0	0	0	0	0	+	0	0	0	r	0	0	0	+	0	0
Masonhalea richardsonii	0	0	0	0	0	+	0	0	0	0	0	0	0	0		0	0	0
Meesia triquetra	٦	1	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Meesia uliginosa	0	0	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Minuartia arctica	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mnium sp.	0	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0
Nostoc commune	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nostoc sp.	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Orthothecium chryseum	0	0	0	0	+	0	1	0	1	+	+	+	0	0	1	+	1	1
Papaver macounii	0	0	0	0	0	+	0	0	0	+	0	0	0	0	0	0	0	0
Pedicularis albolabiata	+	+	0	0	0	0	0	r	0	0	0	0	+	0	0	+	0	0
Pedicularis capitata	0	0	0	0	0	+	0	0	0	0	+	0	0	0	0	0	0	0
Pedicularis lanata	0	0	0	0	+	+	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera aphthosa	0	0	0	0	0	r	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Philonotis fontana	0	0	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0
Polygonum viviparum	+	0	0	0	0	0	0	0	0	0	+	0	+	0	+	+	0	+
Pyrola secunda	0	0	0	0	0	0	0	0	0	r	0	0	0	0	0	0	0	0
Salix arctica	+	+	0	0	1	1	1	1	1	1	1	1	1	+	1	1	1	1
Salix lanata s. l.	+	0	0	0	0	0	1	2	1	+	0	0	+	0	0	0	0	-
Salix ovalifolia	0	0	0	0	0	0	0	+	0	0	0	0	+	+	0	0	0	0

Table A4.11a (continued). Terrestrial vegetation plots 21-01 to 21-18.

Taxon	21-01	21-02	21-03	21-04	21-05	21-06	21-07	21-08	21-09	21-10	21-11	21-12	21-13	21-14	21-15	21-16	21-17	21-18
Salix reticulata	0	0	0	0	+	0	-	+	-	-	0	-	+	0	+	+	1	1
Sanionia uncinata	0	0	0	0	-	+	-	0	0	+	0	0	0	0	0	0	+	0
Saxifraga hirculus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	r	0	0
Saxifraga oppositifolia	0	0	0	0	-	+	0	0	0	0	0	0	0	0	0	0	0	-
Scorpidium scorpioides	+	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Senecio atropurpureus ssp. frigidus	0	0	0	0	+	+	0	0	0	0	0	0	0	0	+	0	0	0
Solorina sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stereocaulon alpinum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stereocaulon species	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Thamnolia subuliformis s. l.	0	0	0	0	2	2	0	0	0	-	0	0	0	0	0	0	0	0
Tomentypnum nitens	0	0	0	0	4	3	3	-	2	3	-	-	0	0	3	+	2	1
Unknown bryophytes	0	0	0	0	+	0	0	+	1	+	0	-	0	0	0	0	0	0
Unknown crustose lichen	0	0	0	0	0	0	0	0	0	L	0	0	0	0	0	0	0	0
Unknown dicot	0	0	0	0	0	0	0	0	0	0	r	0	0	0	0	0	0	0
Unknown graminoid	0	0	0	0	L	0	0	0	0	0	0	0	0	0	0	0	0	r

Table A4.11b. Percent species cover abundance for 2021 NIRPO terrestrial vegetation plots 21-19 to 21-35, July 2021. Values are Braun-Blanquet cover-abundance scores: r = rare; + = <1% cover; 1 = 1-5% cover; 2 = 6-25% cover; 3 = 26-50% cover; 4 = 51-75% cover; 5 = 76-100% cover.

Taxon	21-19	21-20	21-21	21-22	21-23	21-24	21-25	21-26	21-27	21-28	21-29	21-30	21-31	21-32	21-33	21-34	21-35
Abietinella abietina	0	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Aneura pinguis	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	+	0
Arctagrostis latifolia	0	-	+	+	0	+	0	0	0	0	0	0	0	0	0	0	0
Aulacomnium palustre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0
Blepharostoma trichophyllum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brachythecium species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bryum pseudotriquetrum	0	0	0	0	0	+	0	0	-	0	+	+	0	0	0	5	0
Bryum sp.	0	0	0	0	+	+	0	0	+	0	0	0	0	+	+	0	0
Calliergon giganteum	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	2
Calliergon richardsonii	0	0	0	0	+	0	0	0	0	0	+	0	0	0	0	0	0
Calliergon sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0
Campylium sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Campylium stellatum	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
Cardamine digitata	0	L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex aquatilis	2	0	0	0	2	-	8	2	1	3	3	5	3	4	3	2	4
Carex atrofusca	+	0	0	0	+	0	0	0	1	0	0	0	0	0	0	0	0
Carex bigelowii	0	0	0	2	0	0	0	0	0	0	0	5	0	0	0	0	0
Carex marina	0	0	0	0	0	0	0	0	0	0	+	0	0	0	+	0	0
Carex membranacea	0	2	2	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex rotundata	+	0	0	0	0	0	0	0	+	-	0	0	0	0	+	0	+

Taxon	21-19	21-20	21-21	21-22	21-23	21-24	21-25	21-26	21-27	21-28	21-29	21-30	21-31	21-32	21-33	21-34	21-35
Carex saxatilis ssp. laxa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex scirpoidea	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>Carex</i> sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cassiope tetragona	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Catoscopium nigritum	-	0	0	+	+	+	0	0	+	-	0	0	0	0	0	2	0
Cetraria islandica	0	+	-	+	0	+	0	0	0	0	0	+	0	0	0	0	0
Cetraria laevigata	0	L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cinclidium arcticum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cinclidium latifolium	-	0	0	0	0	0	0	0	-	-	5	0	0	0	-	+	0
Cinclidium sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
Cinclidium stygium	0	0	0	0	+	0	0	0	0	-	-	0	0	0	0	0	0
Cirriphyllum cirrosum	0	0	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Cladonia pyxidata	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dactylina arctica	0	-	-	+	0	-	0	0	0	0	0	0	0	0	0	0	0
Dactylina madreporiformis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dicranum elongatum	0	+	+	0	0	0	0	0	0	0	0	0	0	0	0	5	0
Distichium capillaceum	+	0	0	0	+	+	0	0	0	0	0	0	0	0	0	2	0
Distichium inclinatum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ditrichum flexicaule	0	-	5	5	0	5	0	0	0	0	0	2	0	0	0	0	0
Drepanocladus brevifolius	2	1	0	0	3	5	0	0	5	1	3	5	0	3	3	2	0
Drepanocladus sp.	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	5
Dryas integrifolia	0	60	60	2	+	5	0	0	0	0	0	2	0	0	0	2	0
Dupontia fisheri	0	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	0
Encalypta rhabdocarpa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Encalypta sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Equisetum scirpoides	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Equisetum variegatum	1	+	+	+	1	+	0	0	+	+	1	1	0	+	+	+	0
Eriophorum angustifolium s. I.	3	5	2	3	3	4	+	0	5	2	3	2	0	0	3	2	0
Eriophorum scheuchzeri	0	0	0	0	0	0	0	0	0	+	+	0	0	0	0	0	0
Eutrema edwardsii	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fissidens species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Flavocetraria cucullata	0	r	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Flavocetraria nivalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hamatocaulis vernicosus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hierochloe pauciflora	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hypnum procerrimum	0	1	+	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Hypnum species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Juncus triglumis	0	0	0	0	0	0	0	0	+	0	r	0	0	0	+	0	0
Lecanora epibryon	0	+	-	0	0	+	0	0	0	0	0	0	0	0	0	0	0
Lophozia sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A4.11b (continued). Terrestrial vegetation plots 21-19 to 21-35.

Taxon	21-19	21-20	21-21	21-22	21-23	21-24	21-25	21-26	21-27	21-28	21-29	21-30	21-31	21-32	21-33	21-34	21-35
Masonhalea richardsonii	0	-	+	+	0	0	0	0	0	0	0	0	0	0	0	0	0
Meesia triquetra	-	0	0	0	+	0	0	0	0	0	-	0	2	2	-	0	0
Meesia uliginosa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
Minuartia arctica	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mnium sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nostoc commune	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0	0
Nostoc sp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Orthothecium chryseum	+	0	0	+	0	+	0	0	0	0	0	-	0	0	0	+	0
Papaver macounii	0	+	+	+	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedicularis albolabiata	+	0	0	0	+	0	0	0	+	0	+	0	0	0	+	0	0
Pedicularis capitata	0	+	+	+	0	+	0	0	0	0	0	+	0	0	0	0	0
Pedicularis lanata	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera aphthosa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peltigera species	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Philonotis fontana	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Polygonum viviparum	0	0	0	+	+	0	0	0	0	0	0	+	0	0	0	+	0
Pyrola secunda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salix arctica	+	0	1	+	+	0	0	0	0	0	0	1	0	0	+	+	0
Salix lanata s. l.	0	0	0	+	-	0	0	0	0	0	0	+	0	0	0	+	0
Salix ovalifolia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Salix reticulata	L	-	0	0	+	-	0	0	0	0	0	2	0	0	0	2	0
Sanionia uncinata	0	-	+	+	0	+	0	0	0	0	0	+	0	0	0	0	0
Saxifraga hirculus	0	0	0	0	0	0	0	0	+	0	L	0	0	0	0	0	0
Saxifraga oppositifolia	0	+	+	0	0	0	0	0	0	0	0	+	0	0	0	0	0
Scorpidium scorpioides	5	0	0	0	0	0	0	r	0	2	0	0	5	0	2	0	0
Senecio atropurpureus ssp. frigidus	0	-	-	+	0	0	0	0	0	0	0	0	0	0	0	0	0
Solorina sp.	0	0	0	L	0	L	0	0	0	0	0	0	0	0	0	0	0
Stereocaulon alpinum	0	-	+	+	0	0	0	0	0	0	0	0	0	0	0	0	0
Stereocaulon species	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thamnolia subuliformis s. l.	0	2	2	-	0	1	0	0	0	0	0	0	0	0	0	0	0
Tomentypnum nitens	0	2	3	4	0	3	0	0	0	0	0	3	0	0	0	2	0
Unknown bryophytes	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Unknown crustose lichen	0	-	1	0	0	r	0	0	0	0	0	0	0	0	0	+	0
Unknown dicot	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Unknown araminoid	0	0	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table A4.11b (continued). Terrestrial vegetation plots 21-19 to 21-35.

	Hori	zon	Soil c	color	Soilmo	oisture		Soil	texture an	d organi	c matter			Soil	рН
Plot ID	Horizon	Depth (cm)	Wet hue value/chroma	Dry hue value/chroma	Gravimetric soil moisture (%)	Volumetric soil moisture (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Texture	Organic matter (%)	Bulk den- sity (g/cm³)	Saturat- ed paste method	1:2.5 volume method
21-01	0e1+0e2	11-16	10YR 2/2	10YR 3/2	256	72	0.00	56	42	2	Sandy loam	32.3	0.28	6.8	6.5
21-01	В	24-29	10YR 3/2	10YR 3/2	79	56	0.00	56	42	2	Sandy loam	25.7	0.70	7.1	6.9
21-02	ō	1-6	7.5YR 3/2.5	10YR 4.5/2	511	64	0.00	58	38	4	Sandy loam	36.5	0.12	7.4	7.2
21-02	Oe	12-17	10YR 3/2	10YR 4/2	186	71	0.00	58	38	4	Sandy loam	20.2	0.38	7.2	7.2
21-02	в	25-30	10YR 3/2	10YR 3/2	53	58	0.00	58	38	4	Sandy loam	11.6	1.10	7.1	7.1
21-03	ō	3-8	10YR 3/2	10YR 3/2	201	70	0.00	42	54	4	Silt loam	26.3	0.35	7.0	7.3
21-03	в	25-30	10YR 3/2	10YR 3/2	271	67	00.0	42	52	4	Silt loam	28.6	0.36	7.0	7.3
21-04	ō	11-16	10YR 2/1	10YR 3/2	230	74	00.0	32	64	4	Silt loam	29.1	0.32	6.9	7.1
21-04	в	21-26	10YR 2/1	10YR 3/2	112	69	00.0	32	64	4	Silt loam	24.0	0.62	7.0	7.1
21-05	в	3-8	10YR 2/2	10YR 4/2	94	59	0.00	4	52	4	Silt loam	15.9	0.63	7.1	7.2
21-06	A	3-8	10YR 2/1	10YR 3/2	137	52	0.00	30	66	4	Silt loam	22.7	0.38	7.0	7.1
21-06	в	NA	10YR 2/1	10YR 4/2	78	51	0.00	30	66	4	Silt loam	19.5	0.65	7.1	7.1
21-07	Oa	3-8	10YR 2/2	10YR 4/2	222	66	0.00	44	50	9	Silt loam	30.7	0:30	7.4	7.2
21-07	в	NA	10YR 3/1	10YR 5/2	61	50	0.00	44	50	9	Silt loam	12.3	0.81	7.2	7.2
21-08	Oe	3-8	10YR 2/2	10YR 4/2	210	67	00.0	48	46	9	Sandy loam	27.5	0.32	7.0	7.1
21-08	в	8-13	10YR 4/1	10YR 5/2	32	40	0.00	48	46	9	Sandy loam	10.3	1.25	6.7	7.2
21-09	Oe	2-7	10YR 2/2	10YR 4/2	164	57	0.00	44	50	9	Silt loam	27.2	0.35	7.0	7.3
21-09	Oa	6-11	10YR 2/1	10YR 3/2	150	68	0.00	44	50	9	Silt loam	23.6	0.45	7.0	7.2
21-09	В	16-21	10YR 3/1	10YR 5/2	28	31	0.00	44	50	6	Silt loam	9.3	1.07	6.9	7.3
21-10	Oa2	6-11	10YR 2/1	10YR 4/2	124	52	00.0	52	42	9	Sandy loam	23.5	0.42	7.1	7.2
21-10	в	17-22	10YR 3/1	10YR 5/1	26	31	0.01	52	42	9	Sandy loam	6.5	1.17	7.0	7.4
21-11	0i2	3-8	10YR 2/2	10YR 5/2	492	56	00.0	n.d.	n.d.	n.d.	n.d.	48.6	0.11	7.0	7.2
21-12	Oe	4-9	10YR 2/1	10YR 4/2	385	60	0.00	n.d.	n.d.	n.d.	n.d.	57.0	0.16	7.1	7.1
21-12	Oa	11-16	10YR 3/1	10YR 5/2	133	58	0.00	n.d.	n.d.	n.d.	n.d.	20.4	0.44	7.0	7.2
21-13	Oe	3-8	10YR 3/2	10YR 4/2	153	63	00.0	44	52	4	Silt loam	24.1	0.41	6.9	7.1
21-13	В	20-25	10YR 3/1	10YR 4/1	70	53	00.0	44	52	4	Silt loam	11.3	0.75	7.1	7.3
21-14	Oe	10-15	10YR 2/2	10YR 4/2	191	72	00.0	30	64	9	Silt loam	23.7	0.37	7.0	7.0
21-14	в	19-24	10YR 3/2	10YR 4/2	73	56	0.01	30	64	9	Silt loam	16.5	0.76	6.7	7.0
21-15	Oe	5-10	10YR 2/2	10YR 4.5/2	155	52	00.0	30	64	9	Silt loam	n.d.	0.33	7.3	7.3
21-15	Oa	14-19	10YR 3/2	10YR 5/2	77	53	0.00	30	64	9	Silt loam	14.0	0.69	7.1	7.3
21-15	В	25-30	10YR 3/1	10YR 4/1	81	54	0.02	30	64	9	Silt loam	19.5	0.67	6.7	6.8
21-16	Oe	6-11	10YR 2/2	10YR 4/2	313	79	0.00	44	48	8	Loam	36.2	0.25	7.1	7.2
21-16	Oa	11-16	10YR 2/2	10YR 5/2	146	68	0.00	44	48	8	Loam	17.1	0.47	7.2	7.4
21-16	В	23-28	10YR 3/1	10YR 5/2	44	52	0.02	44	48	8	Loam	8.8	1.20	7.1	7.3
21-17	Oe	5-10	10YR 2/2	10YR 4.5/2	168	76	0.00	54	38	8	Sandy loam	22.9	0.45	7.1	7.2
21-17	в	23-28	10YR 3/2	10YR 4/1	31	37	0.09	54	38	8	Sandy loam	9.4	1.20	7.0	7.2

APPENDIX 4

(continued)	
Ν	
ς.	
4	
◄	
Ð	
0	
a	
E.	

	Hor	ʻizon	Soil c	olor	Soil mo	oisture		Soil	texture a	nd organi	ic matter			Soil p	Ŧ
		Donth	Mot buo		Gravimetric	Volumetric	oner-j	pues	cil+			Organic	Bulk den-	Saturat-	1:2.5 volumo
Plot ID	Horizon	(cm)	value/chroma	value/chroma	30111013ture (%)	(%)	(%)	(%)	(%)	(%)	Texture	(%)	عاد (g/cm³)	method	method
21-18	0e2	5-10	10YR 2/2	10YR 3/3	204	69	0.00	54	42	4	Sandy loam	27.2	0.34	6.6	6.8
21-18	В	20-25	10YR 3/2	10YR 4/1	50	46	0.03	54	42	4	Sandy loam	12.9	0.91	6.6	6.9
21-19	Oe	4-9	10YR 2/2	10YR 3/2	171	80	0.00	34	64	2	Silt loam	21.5	0.47	6.9	7.2
21-19	В	19-24	10YR 3/2	10YR 4/1	125	76	0.00	34	64	2	Silt loam	24.0	0.61	7.1	7.3
21-20	A1	4-9	10YR 2/2	10YR 3/3	97	59	0.00	NA	NA	NA	NA	17.1	0.61	7.0	7.1
21-20	A2	24-29	10YR 2/2	10YR 3/2	92	51	0.00	NA	NA	NA	NA	18.3	0.55	7.1	7.1
21-21	A	5-10	10YR 3/2	10YR 4/2	30	27	0.00	NA	NA	NA	NA	14.8	0.90	7.0	7.3
21-22	A	10-15	10YR 2.5/2	10YR 5/2	104	59	0.00	NA	NA	NA	NA	11.1	0.57	7.1	7.6
21-23	0e2	13-18	10YR 2/2	10YR 3/2	182	69	0.00	32	62	9	Silt loam	21.7	0.38	7.0	7.4
21-23	В	20-25	10YR 3/2	10YR 5/2	95	59	0.00	32	62	9	Silt loam	24.3	0.62	7.0	7.3
21-24	Marl	6-11	10YR 3/2	10YR 5/2	116	47	0.00	34	64	2	Silt loam	15.0	0.41	7.2	7.5
21-24	Oe	15-20	10YR 2/2	10YR 4/1	83	58	0.00	34	64	2	Silt loam	15.0	0.70	7.1	7.2
21-24	В	26-31	10YR 2/2	10YR 3/2	117	52	0.00	34	64	2	Silt loam	34.1	0.44	6.9	6.9
21-25	Oi?	10-15	10YR 4/2	10YR 3/2	191	73	0.00	NA	NA	NA	NA	27.3	0.38	7.3	7.6
21-26	Marl	0-5	10YR 5/2	10YR 4.5/1	226	72	0.00	NA	NA	NA	NA	26.8	0.32	7.2	7.4
21-26	io	6-11	10YR 2/2	10YR 3/2	187	70	0.00	NA	NA	NA	NA	24.7	0.37	7.2	7.5
21-27	Oe	10-15	10YR 3/2	10YR 3/2	198	75	0.00	56	40	4	Sandy loam	28.0	0.38	6.3	6.5
21-27	В	29-34	10YR 3.5/1	10YR 4/1	41	39	0.00	56	40	4	Sandy loam	9.4	0.93	6.9	7.1
21-28	Oi2	10-15	10YR 2/2	10YR 3/2	218	59	0.00	NA	NA	NA	NA	30.9	0.27	6.1	6.7
21-29	0e1	10-15	10YR 3/3	10YR 4/2	147	63	0.00	48	50	2	Silt loam	23.7	0.43	6.9	7.5
21-29	0e2	35-40	10YR 2/2	10YR 3/2	129	66	0.01	48	50	2	Silt loam	23.3	0.51	6.6	7.1
21-29	в	43-48	10YR 3/2	10YR 3/2	100	63	0.07	48	50	2	Silt loam	19.5	0.63	6.9	7.2
21-30	0e2	15-20	10YR 3/2	10YR 3/2	163	63	0.00	46	52	2	Silt loam	32.8	0.38	6.2	6.4
21-30	0e3	25-30	10YR 3/2	10YR 3/2	149	62	0.00	46	52	2	Silt loam	28.4	0.42	6.6	6.7
21-30	в	44-48	10YR 3/2	10YR 3/2	127	68	0.05	46	52	2	Silt loam	23.8	0.53	6.9	7.0
21-31.1	0i1	5-10	10YR 2/1	10YR 3/3	824	31	0.00	NA	NA	NA	NA	60.9	0.04	6.6	6.9
21-31.1	0i2	10-16	10YR 2/2	10YR 3/3	204	66	0.00	NA	NA	NA	NA	25.6	0.32	6.6	7.0
21-31.1	0i3	16-21	10YR 3/2	10YR 4/2	232	78	0.00	NA	NA	NA	NA	25.7	0.34	6.7	7.1
21-31.2	0i2	2-6	10YR 2/1	10YR 3/3	199	43	0.00	50	46	4	Sandy loam	30.6	0.22	6.7	7.1
21-31.2	0i3	8-13	10YR 2/1	10YR 3/2	145	63	0.00	50	46	4	Sandy loam	21.5	0.43	6.9	7.1
21-31.2	в	31-36	10YR 3/1	10YR 4/1	46	43	0.06	50	46	4	Sandy loam	13.2	0.95	6.9	7.4
21-32	0i1	0-5	10YR 2/2	10YR 3/4	863	41	0.00	NA	NA	NA	NA	69.8	0.05	6.4	6.7
21-32	0i2	10-15	10YR 3/2	10YR 4/1	105	64	0.00	NA	NA	NA	NA	14.3	0.61	6.1	6.3
21-32	0i3	30-35	10YR 2.5/2	10YR 3/2	256	74	0.00	NA	NA	NA	NA	37.2	0.29	5.6	5.8

Table A4.12 (continued)

Soil pH	aturat- 1:2.5	d paste volume	nethod method	6.2 6.4	6.9 7.2	6.4 6.3	6.2 6.3	6.0 6.2	6.8 7.0	
	Bulk den-	sity e	(g/cm³) r	0.39	1.34	0.28	0.36	0.44	1.32	
	Organic	matter	(%)	31.4	6.0	35.3	31.5	26.7	6.8	
ic matter			Texture	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Loamy sand	Loamy sand	
ind organ		Clay	(%)	4	4	2	2	2	2	
l texture a		Silt	(%)	30	30	64	64	24	24	
Soi		Sand	(%)	66	66	34	34	74	74	
		Gravel	(%)	0.00	0.04	0.00	0.00	0.00	0.06	
isture	Volumetric	soil moisture	(%)	81	47	66	70	64	40	
Soil mo	Gravimetric	soil moisture	(%)	206	35	236	195	146	30	
olor		Dry hue	value/chroma	10YR 3/2	10YR 4.5/1	10YR 4/2	10YR 3/2	10YR 3/2	10YR 4/1	
Soil c		Wet hue	value/chroma	10YR 2/2	10YR 4/1	10YR 2/2	10YR 3/1	10YR 2/2	10YR 3/2	
on		Depth	(cm)	10-15	38-43	10-15	38-43	10-15	30-35	
Horiz			Horizon	Oi3	В	Oe1	В	Oi2	В	
			Plot ID	21-33.2	21-33.2	21-34	21-34	21-35	21-35	

APPENDIX 4

of the plant com-	
e 50 x 20 cm sample	
from a representativ	
dry weights in g/m²	
gust 2021. Data are	
idhoe Bay, 26-31 Au	
regetation plots, Pru	
1 NIRPO terrestrial	ח and lifeform.
und biomass of 202	rted by growth form
le A4.13. Abovegro	nities at each plot so
Tab	шш

Total	(g/m ⁻) 6576	2,000	150.3	688.2	923.9	1019.3	996.6	875.4	1087.2	1697.2	515.3	616.3	314.8	888.3	1249.9	784.4	995.7	641.8	519.6	1298.8	1251.6	1117.1	893.7	1083.5	17.7	32.3	211.5	240.5	648.5	1025.4	479.3	564	287.5	534.4	322.3
Litter	(g/m ⁻)	17.0	2.1 2.1	86.9	291.1	105.2	216	183.2	369.2	498.6	82.8	149	80.6	51.3	76.5	55.6	186.6	120.9	24.9	415.5	272.6	342.2	30.3	114.3	0	0	0	0	22.9	127.7	0	0	0	66.5	81.1
Moss	(g/m ⁻)	0.075	785	342.4	265.3	594.2	249.8	130.6	211.2	739.3	118.6	129	64.4	613.6	934.9	376.9	411.4	188	269.7	355.2	628.3	350.8	563.4	531.4	0	0	1.1	60.8	413.2	538.3	142.4	218.2	56.8	211.7	72.8
Lichen	(-m-)	0. n			64.8	55	0	0	0	53.1	0	0	0	0	0	2.9	37.6	0	0	7.77	72.1	37.6	0	43.9	0	0	0	0	0	0	0	0	0	0	0
Alga	(-m/g)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.8	0	0
Spike moss	(-m/g)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Horsetail	(-m/g)	2C 01			7.4	8.3	8.1	10	14.3	1.1	0	6.7	17.2	8.4	15.7	8.7	23.9	18.8	39	22.4	0	6.9	55.1	19.3	0	0	1.6	1.5	32	19.6	0	2.8	0.6	15	0
Forb	(-m/g)				0	6.5	0	0	1.1	0.3	0	0	0	0	0	2.1	2.7	0	0	63.7	7.8	2.4	2.5	0	0	0	0	0	1.9	3.2	0	0	0	2.5	0
Graminoid (dead)	(g/m ⁻)	71.0	27.6 A	161.3	52.4	20.9	230.6	157.6	213.5	50.9	79.6	165.7	83	92.9	99.5	103.9	122.7	103.4	124.4	52.2	58.1	130.2	123.7	109.6	13.7	20.1	126.4	83.1	93.4	148.1	65.5	118.6	98.2	73.3	20
Graminoid (live) (2,22)	(-m/g)	C. FF	30.7	97.6	53.9	36.1	197.7	58	25.2	67.2	123.7	139.4	68.3	106.5	90.8	174.2	31.4	34.9	61.6	29.6	30.8	29.7	84.3	33.4	4	12.2	82.4	95.1	85.1	106.8	271.4	224.4	130.1	53	148.4
Evergreen shrub	(-m/g)	1.01		0	160	183.8	8	24.8	99.5	279.5	7.77	0	1.3	0	0	43.2	149.7	120.7	0	273.4	176.4	166.9	4.1	230.2	0	0	0	0	0	53.4	0	0	0	89.3	0
Deciduous shrub	(-m/g)	221		0	29	9.3	86.4	311.2	153.2	7.2	32.9	26.5	0	15.6	32.5	16.9	29.7	55.1	0	2.3	5.5	50.4	30.3	1.4	0	0	0	0	0	28.3	0	0	0	23.1	0
t of the second se	Iransect	0 P	2 8	2 82	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T8	T8	T9	T9	T9	T9	T9	T9	17	41	17	17	17	17	17	17	77	17	4
Surface	Teature Continualors	Fourtheress	Fasturaless	Featureless	Center	Center	Center	Center	Center	Center	Trough	Trough	Trough	Trough	Trough	Trough	Rim	Rim	Center	Center	Center	Center	Center	Rim	Marl pond	Marl pond	Center	Center	Center	Rim	Trough	Trough	Center	Rim	Trough
Vegetation	type M2		ZWI	M4	CI CI	U3	U4	U4	U4	U3	M2	U4	U4	M2	U4	M2	U4	U4	M2	U3	U3	U3	M2	U3	M4?	M4?	M2	U4	M2	U4	E1	E1	M4	U4	E1
		10-12	21-02	21-04	21-05	21-06	21-07	21-08	21-09	21-10	21-11	21-12	21-13	21-14	21-15	21-16	21-17	21-18	21-19	21-20	21-21	21-22	21-23	21-24	21-25	21-26	21-27	21-28	21-29	21-30	21-31	21-32	21-33	21-34	21-35

Table A4.14. Temperature loggers (Thermocron iButton[®] model DS1922L) installed at 2021 NIRPO terrestrial vegetation plots, Prudhoe Bay, Alaska, July 2021. Sampling started at 0:00 on 17 July 2021, with a sampling rate of 240 min. and capacity of 8192 readings. The last button was installed by 18:00 on 26 July 2021. iBtn ID: Temporary assigned ID number. Depth: Distance from soil surface. Serial no.: Permanent factory ID.

Plot ID	Trans- ect	iBtn ID	Sensor location	Depth (cm)	Serial no.	Plot ID	Trans- ect	iBtn ID	Sensor location	Depth (cm)	Serial no.
21-01	T8	T57	organic layer base	-24	15000000751CE641	21-18	T8	T06	organic layer base	-20	74000000755C0E41
21-01	T8	T13	soil surface	0	7000000755D3141	21-18	T8	T53	soil surface	0	48000000755B9A41
21-02	T8	T29	organic layer base	-25	32000000755A3F41	21-19	Т9	T25	organic layer base	-19	DF000000755D4041
21-02	T8	T08	soil surface	0	29000000755E1941	21-19	Т9	T32	soil surface	0	5000000755D1841
21-03	T8	T28	organic layer base	-25	7B000000755AA441	21-20	Т9	T24	organic layer base	-19	31000000755AA941
21-03	T8	T30	soil surface	0	1400000755E4741	21-20	Т9	T14	soil surface	0	83000000755CF941
21-04	T8	T36	organic layer base	-21	1300000755A9341	21-21	Т9	T26	organic layer base	-20	96000000755DDB41
21-04	T8	T07	soil surface	0	DE000000755B9341	21-21	Т9	T09	soil surface	0	B100000755A0D41
21-05	T6	T60 ¹	organic layer base	-10	AE000000751C2941	21-22	Т9	T02 ⁴	base of A horizon	-23	2B000000755D2141
21-05	T6	T58	soil surface	0	E4000000751D3D41	21-22	Т9	T17	soil surface	0	8100000755CEA41
21-06	T6	T22	organic layer base	-10	7B00000075598F41	21-23	Т9	T18	organic layer base	-20	F9000000755D5C41
21-06	T6	T43	soil surface	0	8F000000755AC541	21-23	Т9	T38	soil surface	0	45000000755A6C41
21-07	T6	T51	organic layer base	-12	D7000000755E2741	21-24	Т9	T10⁵	organic layer base	-26	1A000000755A5A41
21-07	T6	T59	soil surface	0	7C000000751A0241	21-24	Т9	T11	soil surface	0	1000000755D4A41
21-08	T6	T47	organic layer base	-20	9C000000755C9D41	21-25	T7	T40	organic layer base	-20	D700000075596841
21-08	T6	T55	soil surface	0	FF000000755A2641	21-25	T7	T04	soil surface	0	2C000000755BC741
21-09	T6	T12	organic layer base	-14	6D00000755C5F41	21-26	T7	T39	organic layer base	-20	B5000000755C7D41
21-09	T6	T23	soil surface	0	B60000075599641	21-26	T7	T03	soil surface	0	5E000000755C7841
21-10	T6	T27	organic layer base	-19	6600000755BCA41	21-27	T7	T56	organic layer base	-26	BD000000751F0C41
21-10	T6	T42	soil surface	0	C3000000755DB241	21-27	T7	T21	soil surface	0	55000000755DBB41
21-11	T6	T52	organic layer base	-17	6E000000755A9F41	21-28	T7	T35	organic layer base	-40	BA000000755AD741
21-11	T6	T49	soil surface	0	8B000000755CB541	21-28	T7	T01	soil surface	0	B90000075596A41
21-12	T6	T31	organic layer base	-11	A500000755AB341	21-29	T7	NA	no iButtons		
21-12	T6	T33	soil surface	0	1600000755C6641	21-30	T7	NA	no iButtons		
21-13	T6	T45	organic layer base	-20	A200000755D4C41	21-31b	T7	T15 ²	organic layer base	-20	7100000755CAD41
21-13	T6	T54	soil surface	0	5800000755A1B41	21-31b	T7	T05	soil surface	0	7D0000007559BA41
21-14	T6	T44	organic layer base	-19	2A0000007559C041	21-32	T7	NA	no iButtons		
21-14	T6	T46	soil surface	0	4000000755ACF41	21-33	T7	NA	no iButtons		
21-15	T6	T37	organic layer base	-20	7300000755BF141	21-34	T7	NA	no iButtons		
21-15	T6	T48	soil surface	0	3F000000755BC941	21-35	T7	T34	organic layer base	-20	2C000000755C8841
21-16	T6	T41	organic layer base	-23	02000000755CD841	21-35	T7	T16 ³	soil surface	0	7900000755AB741
21-16	T6	T50	soil surface	0	1800000755E2D41	Notes: 1	/ Serial no	. is for Te	50, not T16. Check dat	a. 2/ iButto	ons on snow pole in
21-17	T8	T19	organic layer base	-23	8D000000755BCF41	the plot	. 3/ Serial I	no. is for	T16, not T60. Check o	lata. 4/ Dej	oth not written in the
21-17	T8	T20	soil surface	0	E000000755C1441	tield bo was inco	ок; assume ompletely	e pase of recorde	r the A horizon. 5/ Che d in field notebook.	eck iButtor	טו n removal. ID

APPENDIX 5 2021 Aquatic Plot Data and Photos

Table A5.1. 2021 aquatic vegetation plots, NIRPO and Jorgenson sites, July-August 2021. **Observers:** Emily Watson-Cook (EWC), Zoe Meade (ZM), Josephine Mahoney (JM), and Jana L. Peirce (JLP). Latitude, Longitude: Based on DGPS survey, 26 August 2021.

Plot ID	Date sampled	Observers	Plot photo no.	Soil photo no.	Transect	Latitude (WGS84 DD)	Longitude (WGS84 DD)
21A-01	2021-07-23	EWC, ZM	3579-80, 3938	3715, 16	JS	70.229581	-148.427553
21A-02	2021-07-23	EWC, ZM	3588-89	3717	JS	70.228217	-148.426264
21A-03	2021-07-23	EWC, ZM	3592-93	3719	JS	70.228903	-148.424881
21A-04	2021-07-23	EWC, ZM	3577-78	3714	JS	70.229614	-148.425036
21A-05	2021-07-24	EWC, ZM	3596-97, 3931	3711,12	JS	70.230125	-148.423664
21A-06	2021-07-23	EWC, ZM	3594-95	3721	JS	70.229264	-148.424272
21A-07	2021-07-29	EWC, JM	3740-41	3720	JS	70.229222	-148.424314
21A-08	2021-07-24	EWC, ZM	3600-01	3722	JS	70.229214	-148.423450
21A-09	2021-07-24	EWC, ZM	3598-99	3708	JS	70.230106	-148.421914
21A-10	2021-07-25	EWC, ZM	3613, 3615	3732	JS	70.229222	-148.422481
21A-11	2021-07-24	EWC, ZM	3609-10	3727	JS	70.229078	-148.421514
21A-12	2021-07-29	EWC, JM	3736-37	3728	JS	70.229097	-148.421492
21A-13	2021-07-25	EWC, ZM	3611-12	3730	JS	70.229114	-148.420942
21A-14	2021-07-29	EWC, JM	3734-35	3729	JS	70.229044	-148.421111
21A-15	2021-07-25	EWC, ZM	3616	3706	JS	70.229711	-148.418264
21A-16	2021-07-29	EWC, JM	3742-43	3705	JS	70.229692	-148.418283
21A-17	2021-07-25	EWC, ZM	3620-22	3707	JS	70.229461	-148.417739
21A-18	2021-07-24	EWC, ZM	3602-03	3725	JS	70.229022	-148.423689
21A-19	2021-07-29	EWC, JM	3738-39	3724	JS	70.229019	-148.423644
21A-21	2021-07-20	EWC, ZM, JP	3512, 3771-72	3633	T6	70.231781	-148.447986
21A-22	2021-07-22	EWC, ZM	3543, 3549	3673	T6	70.231753	-148.449194
21A-23	2021-07-22	EWC, ZM	3551-52	3675-76	T6	70.231875	-148.449664
21A-24	2021-07-27	EWC, JM	3702	3677	T6	70.231847	-148.449669
21A-25	2021-07-22	EWC, ZM, JM, JP	3561-62	3626	T6	70.231486	-148.451067
21A-26	2021-07-23	EWC, ZM	3569-70	3679	T6	70.231119	-148.451867
21A-27	2021-07-27	EWC, JM	3681, 3905	3678	T6	70.231106	-148.451794
21A-28	2021-07-23	EWC, ZM	3571, 3573	3680	T6	70.231683	-148.454981
21A-29	2021-07-22	EWC, ZM, JM, JP	3559-60	3658	T6	70.231869	-148.452086
21A-30	2021-07-27	EWC, JM	3682	3659	T6	70.231875	-148.452150
21A-31	2021-07-22	EWC, ZM, JM, JP	3557-58	3655	T6	70.231875	-148.451206
21A-32	2021-07-20	EWC, ZM, JP	3516-17, 3521	3635	T6	70.232325	-148.448708
21A-33	2021-07-20	EWC, ZM, JP	3528-29	3639	T6	70.232331	-148.449839
21A-34	2021-07-20	EWC, ZM, JP	3530-31	3640, 41	T6	70.232475	-148.450083
21A-35	2021-07-27	EWC, JM	3700-01	3644	T6	70.232514	-148.450267
21A-36	2021-07-21	EWC, ZM	3536-37	3648	T6	70.232347	-148.450417
21A-37	2021-07-21	EWC, ZM	3542, 3544	3649	T6	70.232158	-148.451192
21A-38	2021-07-27	EWC, JM	3698-99	3652, 53	T6	70.232147	-148.451153
21A-39	2021-07-22	EWC, ZM	3553-56	3654	T6	70.232036	-148.451458
21A-40	2021-07-20	EWC, ZM, JP	3510-11, 3770	3625	T6	70.231336	-148.447769

 Table A5.2. Plant species list for aquatic vegetation plots, NIRPO and Jorgenson sites, July-August 2021.

Taxon name	Taxon code	Taxon	Growth form
Calliergon richardsonii (Mitt.) Kindb.	CALRIC	Calliergon richardsonii	Pleurocarpous moss
Carex aquatilis Wahlenb.	CARAQU	Carex aquatilis	Wet to moist non-tussock sedge
Hamatocaulis lapponicus (Norrlin) Hedenas	HAMLAP	Hamatocaulis lapponicus	Pleurocarpous moss
Hamatocaulis vernicosus (Mitt.) Hedenas	HAMVER	Hamatocaulis vernicosus	Pleurocarpous moss
Hippuris vulgaris L.	HIPVUL	Hippuris vulgaris	Forb
Meesia triquetra (H. Richter) Aongstr.	MESTRI	Meesia triquetra	Acrocarpous moss
Pseudocalliergon sp. (Limpricht) Loeske	PSEUSP	Pseudocalliergon sp. 06-07	Pleurocarpous moss
Pseudocalliergon sp. (Limpricht) Loeske	PSEUSP	Pseudocalliergon sp. 10-03	Pleurocarpous moss
Pseudocalliergon sp. (Limpricht) Loeske	PSEUSP	Pseudocalliergon sp. 11-05	Pleurocarpous moss
Pseudocalliergon turgescens (T. Jensen) Loeske	PSETUR	Pseudocalliergon turgescens	Pleurocarpous moss
Ranunculus gmelinii DC.	RANGME	Ranunculus gmelinii	Forb
Scorpidium cossonii (Schimper) Hedenas	SCOCOS	Scorpidium cossonii	Pleurocarpous moss
Scorpidium revolvens (Swartz) Rubers	SCOREV	Scorpidium revolvens	Pleurocarpous moss
Scorpidium scorpioides (Hedw.) Limpr.	SCOSCO	Scorpidium scorpioides	Pleurocarpous moss
Sparganium hyperboreum Laest. Ex Beurl	SPAHYP	Sparganium hyperboreum	Forb
Utricularia vulgaris L.	UTRVUL	Utricularia vulgaris	Forb

1 = 1-5% cover; $2 = 6-25%$	% cover;	3 = 26-5	0% cove	r; 4 = 51 -	75% cove	er; 5 = 76-	-100% α	over.											
Tavos	21A-	21A-	21A-	21A-	21A- 05	21A- 06	21A-	21A-	21A-	21A-	21A-	21A-	21A-	21A-	21A-	21A- 16	21A-	21A-	21A-
Callieraan richardsonii	5 4	7	3 -	5	G 4	3 4	, -	3 ,	S ~	2 4	-	<u>,</u>	2 -		2 4	2	<u> </u> ,	2 ~	<u>,</u>
	,	4	-	,	,	,	-	-	,	,	-	-	, 	, 	,	-	-	4	-
Carex aquatilis	0	0	0	0	•	0	0	-	0	0	-	-	0	0	-	0	0	L	-
Hamatocaulis lapponicus	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
Hamatocaulis vernicosus	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
Hippuris vulgaris	2	0	ß	0	2	-	2	-	0	0	0	0	S	-	0	-	-	0	0
Meesia triquetra	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 06-07	0	0	0	0	0	L	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 10-03	0	0	0	0	0	0	0	0	0	r	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 11-05	0	0	0	0	0	0	0	0	0	0	r	0	0	0	0	0	0	0	0
Pseudocalliergon turgescens	0	0	0	0	0	0	r	0	0	L	r	0	0	0	r	L	0	0	0
Ranunculus gmelinii	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L	4	0	0
Scorpidium cossonii	0	0	1	0	0	0	0	0	4	3	0	0	0	L	r	0	0	0	0
Scorpidium revolvens	0	0	0	0	0	L	0	0	0	r	0	0	0	0	0	1	0	0	0
Scorpidium scorpioides	0	5	0	5	0	0	0	5	0	0	5	-	-	٦	0	0	0	5	-
Sparganium hyperboreum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Utricularia vulgaris	0	0	2	0	0	-	-	L	0	0	r	٦	0	L	٦	0	4	0	0

Table A5.3 (continued). Aquatic vegetation plots 21A-21 to 21A-40.

Taxon	21A- 21	21A- 22	21A- 23	21A- 24	21A- 25	21A- 26	21A- 27	21A- 28	21A- 29	21A- 30	21A-	21A-	21A-	21A- 34	21A- 35	21A- 36	21A- 37	21A- 38	21A- 39	21A- 40
Calliergon richardsonii	-	0	5	-	7	5	-	-	5	-	0		2	5	-	5	5	-	5	-
Carex aquatilis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hamatocaulis lapponicus	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	-	0	0
Hamatocaulis vernicosus	2	0	0	0	-	-	0	0	-	0	0	2	0	0	0	0	0	0	0	0
Hippuris vulgaris	0	4	-	0	2	0	0	5	0	0	0	0	0	2	0	0	0	0	0	m
Meesia triquetra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 06-07	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 10-03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon sp. 11-05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseudocalliergon turgescens	ъ	0	0	0	-	0	0	0	0	0	0	m	0	0	0	0	0	0	0	0
Ranunculus gmelinii	0	2	-	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
Scorpidium cossonii	0	0	-	0	0	0	-	0	-	0	0	0	-	0	-	0	0	0	0	0
Scorpidium revolvens	0	0	0	-	0	0	0	0	0	-	0	0	-	0	0	0	0	0	-	-
Scorpidium scorpioides	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>۔</u>
Sparganium hyperboreum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Utricularia vulgaris	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 Table A5.3. Percent species cover abundance on aquatic vegetation plots 21-01 to 21-19, Jorgenson Site, July 2021. Values are Braun-Blanquet cover-abundance scores: r = rare; + = <1% cover;</th>

 1 = 1-5% cover;
 2 = 6-25% cover;
 3 = 26-50% cover;
 4 = 51-75% cover;
 5 = 76-100% cover.

PLOTID	21A-01	21A-02	21A-03	21A-04	21A-05	21A-06	21A-07	21A-08	21A-09	21A-10	21A-11	21A-12	21A-13
SITE FACTORS: CATEGORICAL VARIABLES (SEE TABLE A4.5)													
Surficial geology/ parent material	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Landform	10	10	10	10	10	10	10	10	10	10	10	10	10
Topographic position	ø	8	8	8	8	8	8	8	8	8	8	8	8
Surficial geomorphology	10	10	10	10	10	10	10	10	10	10	10	10	10
Microsite	13	13	13	13	13	13	13	13	13	13	13	13	13
Disturbance type	0	0	0	0	0	0	0	0	0	0	4	0	0
SITE FACTORS: SCALAR VARIABLES (SEE TABLE A4.5)													
Estimated relative surface age (scalar 1–5)	'n	S	5	2	2	ß	5	5	5	2	ß	ъ	5
Site moisture (scalar, 1–10)	10	10	10	10	10	10	10	10	10	10	10	10	10
Soil moisture (scalar, 1–10)	6	6	6	10	6	6	6	6	6	6	6	6	6
Estimated snow duration (scalar. 1–10)	ъ	ß	5	5	S	5	5	5	5	5	ß	S	5
Animal and human disturbance degree (scalar, 0–5)	0	0	0	0	0	0	0	0	0	0	-	0	0
Site stability (scalar, 1–5))	4	4	4	4	4	4	4	4	4	4	4	4	4
Exposure to wind (scalar)	2	2	2	2	2	2	2	2	2	2	2	2	2
SITE FACTORS: CONTINUOUS VARIABLES													
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0
Thaw depth (cm, mean of 4 measurements, mid-July 2021)	35.5	29	43.5	36.5	35.0	34.3	41.25	41.75	37.75	37	38.25	40	35.5
Thaw depth (cm, mean of 5 measurements, mid-Aug. 2021)	45.6	38.2	54.4	39	37.6	40.8	50	50.6	48.4	45.6	50.8	47	45.4
Water depth (cm, mean of 5 measurements, mid-July 2021)	35.2	48.2	50	61.8	44.4	53.2	51.6	48	40.6	59.8	36.6	49.8	58.6
Water depth (cm, mean of 5 measurements, mid-Aug 2021)	40.4	48.4	52.8	69.69	49.6	59.4	58.2	55	45.4	65.6	37	57.2	65.2
Water depth (cm, maximum within plot, mid-July 2021)	37	48	55	71	48	57	60	55	41	62	43	54	65
Water depth (cm, maximum within plot, mid-Aug, 2021)	45	54	58	82	58	64	68	61	49	70	43	61	72
Pond width (m, maximum mid-July 2021)	20.3	6.6	14.9	7.2	20.2	12	12	5.9	14.9	17.5	14	14	18.2
Pond width (m, perpendicular to maximum, mid-July 2021)	8.2	6.3	8.2	6.1	7.3	4.7	4.7	3.6	3.3	4.1	5.5	5.5	4.6
Shrub height (cm, mean of 3 measurements)	0	0	0	0	0	0	0	0	0	0	0	9	0
Emergent vegetation height (cm, mean of 3 measurements)	39.67	45.67	0	0	47	0	0	0	0	0	32.3	57.33	58
Submergent vegetation height (cm, mean of 3 measurements)	22.67	43.67	14	13.33	39.67	35.67	7.67	13.67	19	12	17	8	25.33
Herbaceous layer height (cm, mean of 3 measurements)	39.67	0	15.67	0	47	32	9.67	23.67	0	14.3	32.3	4	19.67
Live moss thickness (cm, mean of 3 measurements)	22.67	43.67	6.33	13.33	39.67	26.67	8.33	18.33	19	12	17	7.67	4.33
Dead moss thickness (cm, mean of 3 measurements)	0	0	5	5	0	0	4.67	0	0	0	0	4	0
Total organic (+ a horizon) thickness (cm)	19	16	17	32	24	12	18	22	21	20	24	24	24
VEGETATION CATEGORICAL DESCRIPTORS													
Habitat type (See Table A4.6)	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1
Dominant vegetation type	Moss	Moss	Forb	Moss	Moss	Moss	Bare	Moss	Moss	Moss	Moss	Bare	Forb

Table A5.4. Environmental site factor and plant growth form cover values for aquatic vegetation plots, Jorgenson and NIRPO sites, Prudhoe Bay, Alaska, July-August 2021. Site factors: See Table

PLOT ID	21A-01	21A-02	21A-03	21A-04	21A-05	21A-06	21A-07	21A-08	21A-09	21A-10	21A-11	21A-12	21A-13
VEGETATION AND OTHER LANDCOVER VARIABLES (PERCENT COVER)													
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0	0	0.1	0	0	0	0	0	0	0	0	0	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0.1	0
Evergreen shrubs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0
Deciduous shrubs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0.1	0
Erect forbs (live + attached dead)	12	0	95	0	25	9.1	19	0.2	0	0	0.1	-	06
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0
Non-tussock graminoids (live + attached dead)	0	0	0	0	0	0	0.1	5.1	0	0	0.1	7	0
Tussock graminoids (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0
Horsetails (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0
Foliose lichens	0	0	0	0	0	0	0	0	0	0	0	0	0
Fruticose lichen	0	0	0	0	0	0	0	0	0	0	0	0	0
Crustose lichen	0	0	0	0	0	0	0	0	0	0	0	0	0
Pleurocarpous bryophytes + leafy liverworts	95	107	9	80	66	93.3	5.2	84.1	100	82.3	99.1	7.1	40.1
Acrocar pous bryophytes	0	0	0	0	0	0	0	0	0	0	0	0	0
Total bryophytes (mosses and leafy liverworts)	95	107	9	80	66	93.3	5.2	84.1	100	82.3	99.1	7.1	40.1
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0	0	0
Algae	6	0.1	0.1	75	0.1	15	0.1	0.1	35	25	0.1	0.1	35
Rocks	0	0	0	0	0	0	0	0	0	0	0	0	0
Bare soil	0	0	0	0	0	0	15	0	0	0	0	22	0
Marl	0.1	0.1	0	75	0	0	0.1	0	0	0.1	0.1	0.1	10
Water (mid-July 2021)	100	100	100	100	100	100	100	100	100	100	100	100	100
Litter	100	100	100	100	100	100	06	100	100	100	100	80	100
WATER CHEMISTRY CHARACTERISTICS													
pH (pond bottom)	8.2	8	8.1	7.9	8	7.8	8	8	8.2	8.2	8.1	8.2	8.2
pH (pond surface)	8.3	8.2	8.2	8	8.1	8	8.1	8	8.3	8.2	8.1	8.2	8.2
Conductivity (pond bottom, µs/cm)	250.2	244.1	252.6	394.2	248.6	352.7	373.4	384.4	391.4	372.3	415.6	413.8	401.6
Conductivity (pond surface, μs/cm)	237.5	249.1	255.4	400	251.4	354.2	357	390.5	389.9	379.1	415.5	416.8	407.8
Salinity (pond bottom, ppm)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Salinity (pond surface, ppm)	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Table A5.4 (continued). Aquatic vegetation plots 21A-01 to 21A-13.

0
Ċ.
÷
~
5
1
0
t
4
-
- L.
\overline{A}
-
\sim
Š
÷
_0
0
2
0
÷.
5
4
e
6
0.1
ω.
¥
U K
tic v€
atic ve
uatic v€
quatic ve
Aquatic ve
Aquatic ve
). Aquatic ve
d). Aquatic ve
ed). Aquatic ve
ued). Aquatic ve
nued). Aquatic ve
inued). Aquatic ve
ntinued). Aquatic ve
intinued). Aquatic ve
continued). Aquatic ve
(continued). Aquatic ve
l (continued). Aquatic ve
.4 (continued). Aquatic ve
5.4 (continued). Aquatic ve
45.4 (continued). Aquatic ve
A5.4 (continued). Aquatic ve
e A5.4 (continued). Aquatic ve
ile A5.4 (continued). Aquatic ve
l ble A5.4 (continued). Aquatic ve
able A5.4 (continued). Aquatic ve

PLOT ID	21A-14	21A-15	21A-16	21A-17	21A-18	21A-19	21A-21	21A-22	21A-23	21A-24	21A-25	21A-26
SITE FACTORS: CATEGORICAL VARIABLES (SEE TABLE A4.5)												
Surficial geology/ parent material	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Landform	10	10	10	10	10	10	10	10	10	10	10	10
Topographic position	8	8	8	8	8	8	8	8	8	8	8	8
Surficial geomorphology	10	10	10	10	10	10	10	10	10	10	10	10
Microsite	13	13	13	13	13	13	13	13	13	13	13	13
Disturbance type	0	0	0	0	0	0	0	0	0	0	0	0
SITE FACTORS: SCALAR VARIABLES (SEE TABLE A4.5)												
Estimated relative surface age (scalar 1–5)	5	5	5	5	5	5	5	5	5	5	5	5
Site moisture (scalar, 1–10)	10	10	10	10	10	10	10	10	10	10	10	10
Soil moisture (scalar, 1–10)	6	6	6	6	6	6	6	6	6	6	6	6
Estimated snow duration (scalar. 1–10)	5	5	5	ß	5	5	5	5	5	ß	5	5
Animal and human disturbance degree (scalar, 0–5)	0	0	0	0	0	0	0	0	0	0	0	0
Site stability (scalar, 1–5))	4	4	4	4	4	4	4	4	4	4	4	4
Exposure to wind (scalar)	2	2	2	2	2	2	2	2	2	2	2	2
SITE FACTORS: CONTINUOUS VARIABLES												
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	0	0	0	0	0	0	0	0	0	0	0	0
Thaw depth (cm, mean of 4 measurements, mid-July 2021)	41.75	43	47	42.5	37.5	38.3	27.25	48.25	37.75	42.5	39.5	31.75
Thaw depth (cm, mean of 5 measurements, mid-Aug. 2021)	52	54.2	58	54	38.6	45.0	38	58.2	51.8	53.6	51.6	38.8
Water depth (cm, mean of 5 measurements, mid-July 2021)	54.8	45	34.4	45	53.2	49.2	31.8	43	51	52.8	54.2	42.4
Water depth (cm, mean of 5 measurements, mid-Aug 2021)	61	49.2	42.2	45.8	61.8	58	34	48.6	49.4	61	59.8	49.4
Water depth (cm, maximum within plot, mid july 2021)	61	54	46	54	60	57	34	47	57	63	58	45
Water depth (cm, maximum within plot, mid-Aug, 2021)	66	56	53	53	70	62	38	52	52	70	61	58
Pond width (m, maximum mid-July 2021)	18.2	10.1	10.1	11.3	5.6	5.6	12.7	26.7	28.3	28.3	16.2	14.7
Pond width (m, perpendicular to maximum, mid-July 2021)	4.6	6.2	6.2	7.3	4.3	4.3	5.5	3.9	8.5	8.5	7.4	10
Shrub height (cm, mean of 3 measurements)	5	0	0	0	0	5	0	0	0	8	0	0
Emergent vegetation height (cm, mean of 3 measurements)	0	35	0	0	0	0	0	0	0	0	0	43
Submergent vegetation height (cm, mean of 3 measurements)	12.33	28.33	7.33	20	46.67	18	25	14.33	23.33	7.33	8.33	42.4
Herbaceous layer height (cm, mean of 3 measurements)	12	28.67	8	20	57	37.67	0	14.33	23.67	0	11.33	0
Live moss thickness (cm, mean of 3 measurements)	3	34.67	10.67	5	46.67	7.33	25	0	24.67	7.33	4.33	43
Dead moss thickness (cm, mean of 3 measurements)	2.67	0	5.33	0	0	4.67	5	0	0	4	0	0
Total organic (+ a horizon) thickness (cm)	24	6	21	6	17	24	7	17	17	15	12	12
VEGETATION CATEGORICAL DESCRIPTORS												
Habitat type (See Table A4.6)	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1
Dominant vegetation type	Bare	Moss	Bare	Forb	Moss	Bare	Moss	Forb	Moss	Bare	Forb	Moss

PLOT ID	21A-14	21A-15	21A-16	21A-17	21A-18	21A-19	21A-21	21A-22	21A-23	21A-24	21A-25	21A-26
VEGETATION AND OTHER LANDCOVER VARIABLES (PERCENT COVER)												
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	0.1	0	0	0	0	0.1	0	0	0	0.1	0.1	0
Evergreen shrubs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0
Deciduous shrubs (live + attached dead)	0.1	0	0	0	0	0.1	0	0	0	0.1	0.1	0
Erect forbs (live + attached dead)	1.1	-	1.2	124.1	0	0	0	65	ŝ	0	90	0
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0
Non-tussock graminoids (live + attached dead)	0.1	0.2	0.1	0	0.2	1.1	0	0	0	2	0	0
Tussock graminoids (live + attached dead)	0	0	0	0	0	0	0	0	0	2	0	0
Horsetails (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0
Foliose lichens	0	0	0	0	0	0	0	0	0	0	0	0
Fruticose lichen	0	0	0	0	0	0	0	0	0	0	0	0
Crustose lichen	0	0	0	0	0	0	0	0	0	0	0	0
Pleurocarpous bryophytes + leafy liverworts	6.2	100.2	8.1	0.1	100	9.1	110.2	0	95.1	27.1	13.1	100.1
Acrocarpous bryophytes	0	0	0	0	0	0	0	0	0	0	0	0
Total bryophytes (mosses and leafy liverworts)	6.2	100.2	8.1	0.1	100	9.1	110.2	0	95.1	27.1	13.1	100.1
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0	0
Algae	0.1	2	0	0.1	10	0.1	0	85	06	0	50	0.1
Rocks	0	0	0	0	0	0	0	0	0	0	0	0
Bare soil	24	0	4	0	0	20	0	0	0	10	0	0
Marl	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0.1
Litter	70	100	95	100	100	80	0.1	100	100	95	100	100
WATER CHEMISTRY CHARACTERISTICS												
pH (pond bottom)	8.2	8.2	8.3	8.4	8	7.8	8.2	8.6	7.8	8.1	8.1	8
pH (pond surface)	8.2	8.2	8.3	8.4	8	7.8	8.2	8.5	8.1	8.1	8.2	8.3
Conductivity (pond bottom, µs/cm)	404.9	327.9	333.1	233.4	395.7	396.1	257.8	273.5	298.6	300.1	252.8	226.1
Conductivity (pond surface, μs/cm)	410.6	330.7	331.7	233.2	402.7	403.7	260.9	273.5	298.4	298.7	249.7	227.1
Salinity (pond bottom, ppm)	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1
Salinity (pond surface, ppm)	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1

.

Table A5.4 (continued). Aquatic vegetation plots 21A-14 to 21A-26.

PLOT ID	21A-27	21A-28	21A-29	21A-30	21A-31	21A-32	21A-33	21A-34	21A-35	21A-36	21A-37	21A-38	21A-39	21A-40
SITE FACTORS: CATEGORICAL VARIABLES (SEE TABLE A4.5)														
Surficial geology/ parent material	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Landform	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Topographic position	8	8	8	80	8	8	80	80	80	80	80	∞	8	8
Surficial geomorphology	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Microsite	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Disturbance type	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SITE FACTORS: SCALAR VARIABLES (SEE TABLE A4.5)														
Estimated relative surface age (scalar 1–5)	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Site moisture (scalar, 1–10)	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Soil moisture (scalar, 1–10)	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Estimated snow duration (scalar. 1–10)	5	5	ß	5	ß	5	5	ß	ß	5	5	5	ß	5
Animal and human disturbance degree (scalar, 0–5)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Site stability (scalar, 1–5))	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Exposure to wind (scalar)	2	2	2	2	2	2	2	2	2	2	2	2	2	2
SITE FACTORS: CONTINUOUS VARIABLES														
Slope (degrees)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aspect (cardinal)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Microrelief height (cm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thaw depth (cm, mean of 4 measurements, mid-July 2021)	47.75	38.25	34.25	47.25	44.5	33.25	31.5	27.25	44	27.25	34.5	42.25	39	40
Thaw depth (cm, mean of 5 measurements, mid-Aug. 2021)	53.2	46.2	46.4	53.8	52.6	42.2	40.6	40	61	38.8	45.2	53.6	45	50
Water depth (cm, mean of 5 measurements, mid-July 2021)	47.4	34	38.8	46	37.2	24.5	16.8	42	46.2	30.4	42.6	45.8	25.2	48
Water depth (cm, mean of 5 measurements, mid-Aug 2021)	50.8	39.8	44	51.8	43.8	30.4	24.6	48.2	50.6	35.6	50.2	50.8	31.8	50.6
Water depth (cm, maximum within plot, mid july 2021)	56	44	43	54	45	29	19	43	51	33	51	57	29	59
Water depth (cm, maximum within plot, mid-Aug, 2021)	59	47	50	62	48	35	28	53	55	46	52	58	34	61
Pond width (m, maximum mid-July 2021)	14.7	15.9	11.8	11.8	11.95	11.1	11.1	20.6	20.6	12.5	11.1	11.1	18.9	12.8
Pond width (m, perpendicular to maximum, mid-July 2021)	10	3	4.8	4.8	9.5	5.4	8	6.5	6.5	9.9	10.1	10.1	4	5.8
Shrub height (cm, mean of 3 measurements)	11.67	0	0	0	0	0	0	0	0	0	0	6	0	0
Emergent vegetation height (cm, mean of 3 measurements)	0	38	0	0	0	0	17	50.67	0	33	0	0	0	0
Submergent vegetation height (cm, mean of 3 measurements)	3.67	30.67	23.33	8.33	18.67	18	16.8	37.33	4.33	30.4	16.67	4.67	15.67	10
Herbaceous layer height (cm, mean of 3 measurements)	0	38	0	0	18.67	0	0	0	0	0	0	0	0	48
Live moss thickness (cm, mean of 3 measurements)	3.67	5	23.33	8.33	0	18	17	37.8	4.33	33	16.67	4.67	15.67	7
Dead moss thickness (cm, mean of 3 measurements)	5.67	5	0	5	0	0	0	37.67	5	0	3.67	3.67	0	3.67
Total organic (+ a horizon) thickness (cm)	13	23	12	15	10	7	15	8	5	11	8	12	10	10
VEGETATION CATEGORICAL DESCRIPTORS														
Habitat type (See Table A4.6)	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1	5.05.1
Dominant vegetation type	Bare	Forb	Moss	Bare	Forb	Moss	Moss	Moss	Bare	Moss	Moss	Bare	Moss	Forb

Table A5.4 (continued). Aquatic vegetation plots 21A-27 to 21A-40.

<i>1</i> 0.
1A-4
0 2
27 t
1A-
5 Z
iola
uo
tati
ege
tic v
Ind
. Aq
(pər
tint
con
4 .
Α5
ble
Tal

Di Toli	21 4 1 5	00 110		00 410	10 410	CC 11C	CC V 1C	10 110	30 410	20 4 10	70 410	00 110	00 010	07 410
VEGETATION AND OTHER LANDCOVER VARIABLES (PERCENT CC	DVER)	07-11-7	C7-U17	00-11-1		20.412								04 41 7
Erect dwarf shrubs (15-40 cm tall) (live + attached dead)	0.1	0	0	0.1	0	0	0	0	0	0	0	0	0	0
Prostrate dwarf shrubs (<15 cm tall) (live + attached dead)	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0	0
Evergreen shrubs (live + attached dead)	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0
Deciduous shrubs (live + attached dead)	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0	0
Erect forbs (live + attached dead)	0	118	0	0	75	0	0	18	0	0	0	0	0	57
Mat and cushion forbs (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non-tussock graminoids (live + attached dead)	0	0	0	0.1	0	0	0	0	0	0	0	0.1	0	0
Tussock graminoids (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Horsetails (live + attached dead)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Foliose lichens	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fruticose lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crustose lichen	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pleurocarpous bryophytes + leafy liverworts	26.1	0.2	98.2	7.1	0	73	101.1	103	4.1	100	105	20.2	100.1	1.3
Acrocarpous bryophytes	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total bryophytes (mosses and leafy liverworts)	26.1	0.2	98.2	7.1	0	73	101.1	103	4.1	100	105	20.2	100.1	1.3
Biological soil crusts	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Algae	0.1	0.1	95	0	0	22	-	1	0	0.1	06	0.1	3	0.1
Rocks	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0
Bare soil	0	0	0	2	0	0	0	0	20	0	0	5	0	0
Marl	0	0.1	0.1	0.1	0	0.1	ß	9	0	0	0	0.1	28	10
Litter	100	100	100	95	100	25	100	100	80	100	100	100	100	80
WATER CHEMISTRY CHARACTERISTICS														
pH (pond bottom)	8	8	8.1	8.1	8	8.1	7.6	8.1	8.2	8.2	7.7	8	7.4	8.3
pH (pond surface)	8	8.3	8.1	8.1	8	8	7.7	8.2	8.2	8.7	7.9	8	7.8	8.1
Conductivity (pond bottom, µs/cm)	232.3	316	317.7	315.9	285.6	271	317.2	231.3	238.9	187.9	294.5	294	389.5	351
Conductivity (pond surface, μs/cm)	231.4	295	317	316.1	283.5	278.2	315.8	231.3	232.3	180.7	294	293.7	346.6	351.1
Salinity (pond bottom, ppm)	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.3	0.2
Salinity (pond surface, ppm)	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.2	0.2

Table A5.5. Thermocron iButton[®] temperature loggers installed at aquatic vegetation plots, NIRPO and Jorgenson sites, July-August 2021. *iBtn ID:* Temporary assigned ID number. *Height*: Distance from sediment surface at pond bottom. Height of sensors at water surface varies with water level. *Capacity*: Maximum number of readings, based on data logger model (DS1921G, 2048 readings; DS1922L 8192 8-bit readings). *Serial No.*: Permanent factory ID.

					Sampling			
Tran-		:Ptm ID	Concorlocation	Height	Rate	Capacity	Corial no	Notos
Sect				(CIII)	(mm.)	(readings)		Notes
SHORI-	IERM IBUT I	ON DEPLOY	MENT (DS1921 SERIES)	, INSTALLE	D BY 7/19/21	18:00, REMOVE	D STARTING AT 8/23/21 08:00	
	21A-01	002	above vegetation		60	2048	590000035FF7E21	
	21A-01	004	sediment surface	0	60	2048	CE00000035FA8F21	
	21A-01	001	water surface	varies	60	2048	E200000035F54B21	
72	21A-02	006	above vegetation	42	60	2048	480000036028621	
	21A-02	009	sediment surface	0	60	2048	0300000036003C21	
	21A-02	005	water surface	varies	60	2048	F300000035F21921	
	21A-03	100	above vegetation	115	60	2048	2A00000035F5F121	
72	21A-03	010	dir codimont curfaco		60	2048	050000036541521	
12	21A-03	010	seament surface		60	2048	4700000035677521	
	21A-05	019	above vegetation	10	60	2048	4700000036004621 EE00000036057121	
12	21A-04	024	above vegetation		60	2048	240000036057121	
12	21A-04	022	seament surface		60	2048	A20000035555552	
12	21A-04	020	water surface	22	60	2048	700000035FCC821	
	21A-05	021			60	2048	2900000035FD0321	
	21A-05	023	water surface	Varios	60	2048	DD0000035F24021	
21	21A-05	023	above vegetation	17	60	2048	050000036011021	
	21A-06	020	sediment surface		60	2048	DE00000035EE6421	
	214-00	029	water surface	varies	60	2048	E400000035F94B21	
	21/ 00	027	above vegetation	17	60	2048	D700000036007421	
	21/(07	034	sediment surface	0	60	2048	E200000035EBD521	
	21/(07	030	water surface	varies	60	2048	90000003601E521	
	21/1-08	037	above vegetation	17	60	2048	F700000035E57021	
	21/1 00	038	sediment surface	0	60	2048	9C00000035E38721	
	21/1 00	035	water surface	varies	60	2048	6D0000035EDDB21	
15	21A-09	047	above vegetation	20	60	2048	840000035EDCD21	
JS	21A-09	048	sediment surface	0	60	2048	4C00000035F69421	
JS	21A-09	046	water surface	varies	60	2048	AD00000035FF1F21	
JS	21A-10	041	above vegetation	23	60	2048	96000003601BA21	
JS	21A-10	042	sediment surface	0	60	2048	4C00000035FC6E21	
JS	21A-10	039	water surface	varies	60	2048	3A00000035F22621	
JS	21A-11	052	above vegetation	18	60	2048	F40000035F2A921	
JS	21A-11	053	sediment surface	0	60	2048	F900000035FB9721	
JS	21A-11	050	water surface	varies	60	2048	330000035F4B921	
JS	21A-12	058	above vegetation	18	60	2048	2C000003601F021	
JS	21A-12	059	sediment surface	0	60	2048	FC00000035FF5021	
JS	21A-12	057	water surface	varies	60	2048	FA00000035F7AD21	
JS	21A-13	064	above vegetation	21	60	2048	310000035F5B321	
JS	21A-13	065	sediment surface	0	60	2048	650000035FD9721	
JS	21A-13	060	water surface	varies	60	2048	750000035FA4021	
JS	21A-14	067	above vegetation	21	60	2048	140000035F27621	
JS	21A-14	069	sediment surface	0	60	2048	9100000035F27121	
JS	21A-14	066	water surface	varies	60	2048	460000036069B21	
JS	21A-15	072	above vegetation	27	60	2048	090000036017A21	
JS	21A-15	074	sediment surface	0	60	2048	E500000035F19F21	
JS	21A-15	070	water surface	varies	60	2048	F00000035FF3A21	
JS	21A-16	076	above vegetation	27	60	2048	340000035F25F21	
JS	21A-16	077	sediment surface	0	60	2048	2A000003604B821	
JS	21A-16	075	water surface	varies	60	2048	9A000003603E221	
JS	21A-17	080	above vegetation	13	60	2048	AC00000035FDA821	
JS	21A-17	082	sediment surface	0	60	2048	DD00000035F8B321	
JS	21A-17	079	water surface	varies	60	2048	3D00000035FA5E21	
JS	21A-18	085	above vegetation	46	60	2048	400000035F1B121	
JS	21A-18	086	sediment surface	0	60	2048	950000035FEFB21	
Table A5.5 (continued)

Tran-				Height	Sampling Bate	Canacity		
sect	Plot ID	iBtn ID	Sensor location	(cm)	(min.)	(readings)	Serial no.	Notes
JS	21A-18	083	water surface	varies	60	2048	4B00000035FCDE21	
JS	21A-19	091	above vegetation	46	60	2048	800000035F71121	
JS	21A-19	095	sediment surface	0	60	2048	2200000035FF4721	
JS	21A-19	090	water surface	varies	60	2048	AD000003603E321	
JS	21A-20	101	sediment surface	0	60	2048	EF000000361CAC21	
JS	21A-20	096	water surface	varies	60	2048	E7000003603EE21	In lake; no plot
T6	T6 0m	199	air	100	60	2048	4E00000039DFD621	At transect end
T6	21A-21	105	above vegetation	22	60	2048	910000036118320	
T6	21A-21	108	sediment surface	0	60	2048	1D000000361BB721	
T6	21A-21	103	water surface	varies	60	2048	C600000360DDC21	
T6	21A-22	111	above vegetation	10	60	2048	D700000361B1E21	
T6	21A-22	112	sediment surface	0	60	2048	52000003608BB21	
T6	21A-22	110	water surface	varies	60	2048	5300000360F7121	
T6	21A-23	119	above vegetation	25	60	2048	710000036127720	
T6	21A-23	120	sediment surface	0	60	2048	BA000000360C4C21	
T6	21A-23	117	water surface	varies	60	2048	D50000036182621	
T6	21A-24	125	above vegetation	25	60	2048	91000003613B121	
T6	21A-24	126	sediment surface	0	60	2048	2B00000036098821	
T6	21A-24	122	water surface	varies	60	2048	1E0000003613E921	
T6	21A-25	129	above vegetation	10	60	2048	2A0000036126721	
T6	21A-25	130	sediment surface	0	60	2048	35000003A187221	
T6	21A-25	127	water surface	varies	60	2048	110000036131520	
T6	21A-26	135	above vegetation	51	60	2048	140000003A0F1821	
T6	21A-26	136	sediment surface	0	60	2048	0200000039DCC521	
T6	21A-26	134	water surface	varies	60	2048	30000003A1E8721	
T6	21A-27	141	above vegetation	51	60	2048	1B0000003A148E21	
T6	21A-27	142	sediment surface	0	60	2048	CE00000039DF7221	
T6	21A-27	138	water surface	varies	60	2048	8C0000039E54B21	
T6	21A-28	145	above vegetation	16	60	2048	A5000003A200421	
T6	21A-28	146	sediment surface	0	60	2048	EA0000003A59EF21	
T6	21A-28	144	water surface	varies	60	2048	CA000003A59C621	
T6	21A-29	149	above vegetation	24	60	2048	AF000003A40C321	
	217-29	152	sediment surface	0	60	2048	48000003A254921	
	217.22 21A-29	147	water surface	varies	60	2048	1D00000039F4FB21	
	21A-30	155	above vegetation	24	60	2048	980000003A569821	
	214-30	157	sediment surface	0	60	2048	B50000003A322721	
	217(30	153	water surface	varies	60	2018	5100000039DC9921	
	21/ 30	160	above vegetation	Q	60	2048	E300000034493721	
	21/(31	161	sediment surface		60	2048	550000034227121	
	21/(31	158	water surface	varies	60	2048	9C00000039E8EE21	
	21A-31	150	above vegetation	1/	60	2048	D5000000342D5221	
	21A-32	166	sediment surface	0	60	2048	080000003A2E5121	
	21A-32	163	water surface	varies	60	2048	1600000034158221	
	217-32	169	above vegetation	11	60	2048	270000024277521	
T6	21A-33	160	above vegetation	0	60	2048	5P0000003A577321	
T6	21A-33	167	water surface	U	60	2048	550000003A3C0221	
T6	21A-55	107	water surface	22	60	2048	10000003A1D4C21	
	218-34	172	above vegetation		60	2040	7E0000024277621	
10	21A-34	1/3	seament surface	U	00	2048	/EUUUUU3A3//621	
16	21A-34	170	water surface	varies	60	2048	08000003A141621	
16	21A-35	1/5	above vegetation	32	60	2048	AC000003A04A221	
16	21A-35	1/6	seaiment surface	0	60	2048	0B000003A258D21	
16	21A-35	174	water surface	varies	60	2048	31000003A0CB921	
16	21A-36	NA	no iButton	NA	NA	NA	NA	vegetation at water surface
[6	21A-36	180	sediment surface	0	60	2048	110000003A387621	
T6	21A-36	177	water surface	varies	60	2048	A30000003A4EB221	

Table A5.5 (continued)

Tran-				Height	Sampling Rate	Capacity		
sect	Plot ID	iBtn ID	Sensor location	(cm)	(min.)	(readings)	Serial no.	Notes
T6	21A-37	182	above vegetation	19	60	2048	1F0000003A004521	
T6	21A-37	184	sediment surface	0	60	2048	4A0000003A2D9221	
T6	21A-37	181	water surface	varies	60	2048	12000003A367E21	
T6	21A-38	186	above vegetation	19	60	2048	64000003A2EE921	
T6	21A-38	187	sediment surface	0	60	2048	D8000003A2DBD21	
T6	21A-38	185	water surface	varies	60	2048	0C000003A3C6521	
T6	21A-39	190	above vegetation	25	60	2048	FA0000003A1C1C21	
T6	21A-39	192	sediment surface	0	60	2048	F10000003A0D5621	
T6	21A-39	188	water surface	varies	60	2048	78000003A23AE21	
T6	21A-40	195	above vegetation	8	60	2048	250000003A1D9721	
T6	21A-40	194	water surface	varies	60	2048	32000003A5CB021	
T6	21A-40	196	sediment surface	0	60	2048	A40000003A084221	
LONG-T	ERM IBUTT	ON DEPLOYN	IENT (DS1922 SERIES)	, INSTALLED) BY 7/30/21 1	8:00		
JS	21A-02	L13	sediment surface	0	240	8192	43000000755D1641	
JS	21A-03	L17	sediment surface	0	240	8192	E6000000755A7741	
JS	21A-04	L15	sediment surface	0	240	8192	7000000755E1A41	
JS	21A-09	L14	sediment surface	0	240	8192	5A000000755A0841	
JS	21A-13	L16	sediment surface	0	240	8192	0300000755D4441	
JS	21A-14	L20	sediment surface	0	240	8192	F1000000755C0941	
JS	21A-15	L12	sediment surface	0	240	8192	64000000755D8F41	
JS	21A-16	L19	sediment surface	0	240	8192	C1000000755BF741	
JS	21A-18	L11	sediment surface	0	240	8192	C8000000755C7141	
JS	21A-19	L18	sediment surface	0	240	8192	C000000755A6B41	
T6	21A-21	L03	sediment surface	0	240	8192	3C000000755D0941	
T6	21A-22	L06	sediment surface	0	240	8192	E8000000755D4141	
T6	21A-23	L04	sediment surface	0	240	8192	51000000755D9D41	
T6	21A-24	L10	sediment surface	0	240	8192	11000000755B9941	
T6	21A-26	L02	sediment surface	0	240	8192	2D000000755C0D41	
T6	21A-27	L09	sediment surface	0	240	8192	1B000000755C8941	
T6	21A-28	L07	sediment surface	0	240	8192	6E000007559B441	
T6	21A-34	L01	sediment surface	0	240	8192	B9000000755B5841	
T6	21A-35	L08	sediment surface	0	240	8192	0600000755DE741	
T6	21A-37	L05	sediment surface	0	240	8192	62000000755DBA41	

21A-6 (IMG 3594.jpg)

21A-7 (IMG 3740.jpg)

21A-10 (IMG 3613.jpg)

21A-9 (IMG 3598.jpg)

21A-8 (IMG 3600.jpg)

21A-11 (IMG 3610.jpg)

21A-12 (IMG 3736.jpg)

21A-14 (IMG 3734.jpg)

APPENDIX 5

21A-17 (IMG 3621.jpg)

21A-20 Lake (no plot)

21A-19 (IMG 3738.jpg)

21A-18 (IMG 3603.jpg)

21A-25 (IMG 3562.jpg)

21A-30 (IMG 3682.jpg)

21A-28 (IMG 3573.jpg)

21A-27 (IMG 3681.jpg)

21A-26 (IMG 3569.jpg)

Table A5.7. Photographs of aquatic plot soils, NIRPO and Jorgenson Sites, Prudhoe Bay, July 2021. (Photos: E. Watson-Cook)

Table A5.7 (continued)

112

APPENDIX 6 Basal Peat Sampling

Table A6.1. Basal peat samples collected at terrestrial vegetation plots at the NIRPO site for AMS C-14 dating, Prudhoe Bay, Alaska, 19 July 2021.

	Notes	oric part is }-25 cm	t immediately led with ater		uried organic orizon (cryo- rbation). No ained lake story	ganic xundary no nger visible	Ipric layer ell-developed, composed				me rocks in ineral layer ite is south "17 closer to ke than tran- ct plots)
Sample	depth	:3-24 fib 18	:4-25 Pi fill wa	:1-22	: samples: 1) bu t cm; 2) 28 hc m (buried tu organic dr ayer?) hii	lo sample or bc lo	3-14 sa w	1-32	:4-25	12-33	8-29 so m (si (si of lal
Water above/be-	low	below 2	above, 4 cm 2	below (rapid- 2 y rising)	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00	0 L	below 3	below 2	below 3	below 2
Water depth	(cm)	17	33	32	o	0	0	10	14	20	-
State of organic	horizon	hemic/fibric	hemic/fibric	hemic (a lot of silt in organic horizon)	very sapric/ hemic (nicely aged soil; stones)	sapric	sapric	sapric/ hemic	sapric/ hemic (1st 5 cm fibric)	sapric (a lot of mineral deposits in organic)	sapric/ hemic
Dominant	texture	organic	organic	organic	mineral	mineral	organic	organic with a lot of mineral in organic horizon	organic	organic	organic
Dominant	mineral	sandy silt	silt	silt	sandy silty clay	silt	silty clay	sit	sandy silt	sandy silt	sandy silt
Surface organic thickness	(cm)	18	21	24	10	13	19	21	20	22	16
Cumulative	organic (cm)	24	25	22	Unclear (1st 8 cm fibric to hemic then almost mineral soil)	10	13	32	25	32	29
Total depth	(cm)	25	33	32	34	33	27	35	37	39	37
Thaw depth	(cm)	24	33	32	33	30	27	36	39	43	35
Longitude	(WGS84 DD)	-148.457424	-148.461261	-148,460234	-148.450438	-148.451058	-148.45261	-148.456901	-148.445852	-148.442998	-148.443046
Latitude	(WGS84 DD)	70.231378	70.231056	70.230895	70.231693	70.231685	70.231547	70.231796	70.230145	70.230647	70.23032
Photo no. (Credit: H.	Bergstedt)	21.59.31.jpg	AN	21.34.33.jpg	01.11.18.jpg	01.11.18.jpg	02.02.46.jpg	22.16.02.jpg	23.44.26.jpg	00.00.26.jpg	ИА
Trans-	ect	T8	T8	T8	T6	Т6	T6	19	4	11	4
	Sample ID	21-02 FL M2 RC	21-03 FL M4 RC	21-04 FL M4	21-05 C U3	21-06 C U3 RC	31-08 C U4 RC	21-19 C M 2 RC	21-27 C M2 RC	21-33 C M4 RC	21-X (rogue) C RC

021 Permafrost Borehole Data
VPPENDIX 7 2

Table A7.1. Permafrost borehole locations including redrilling of boreholes from previous studies, Prudhoe Bay, Alaska, 2011-2021. Transect/plot location: Distance from start of transect in meters or name of nearest plot. Distance from start of transect in meters and direction from transect line or plot center indicated by cardinal direction (N, E, S, W), right (R), or left (L).

Site description and notes		Pond ~1.5 wide trough, ~0.3 deep (from the water level), no distinctive elevated rims	Dry trough, ~2.5-3.0 wide, ~0.3-0.4 deep, between 2 deep ponds (~3 m apart)	~1.4 wide pond in ~2.7 wide, ~0.4-0.5 deep trough	Wet trough, ~1.5 wide, ~0.3-0.4 deep, ~ 5 cm above water level, poorly developed elevated rims	Wet trough, ~1.7-2.2 wide, ~0.3 deep	Wet trough, ~1.2-1.7 wide, ~0.4 deep; at the water level, ~high-centered polygon	High-centered polygon, dry, no rims	Dry trough, ~1.3 wide, ~0.1-0.2 deep; almost no elevated rims	Wet trough, ~1.3-1.4 wide, ~0.3 deep; elevated rims ~0.8-1.0	Wet trough, ~1.6 wide; W rim ~0.4 high, ~1.4 wide, ~0.2 above center; E rim not elevated; low/high-centered polygon	Pond; aquatic moss	Pond	Pond	Pond; <10 cm of peat; fresh cracks around the pond	Pond; between 21A-34 and 21A-35	Pond	Pond	Pond; aquatic moss	Wet trough, ~0.7 m wide, poorly developed elevated rims	Pond, ~1.5-1.9 wide trough, elevated rim (western) ~20 high, ~1.5 wide	Low/high-centered polygon with some water	Trough partially filled with water, ~0.8-0.9 m wide, elevated rims ~40 high, ~0.6-0.9 wide,	Dry trough, double rims ~0.15 high and 0.4-0.5 wide (elevated near the ice-wedge crossing)	Pond, ~0.8-1.2 m wide trough, poorly developed rims ~0.2-0.3 high	Pond, ~0.5-0.6 m wide trough, double rims ~0.3 high and 0.7-0.9 wide	Wet trough, ~1.2 m wide, elevated rims ~0.8 wide, ~0.2-0.3 m above water, ~0.1-0.15 above polygon center	Dry part of trough, ~1.7 m wide; no samples	Pond, ~1.7 m wide trough, poorly developed elevated rims ~0.3-0.4 above the water, DA	~2 m from the trough; marl site, wet	~0.5 m wide trough, no rims	~1-1.5 m wide trough, no rims	Pond ~1.5 m wide trough, poorly developed elevated rims ~0.3-0.4 above the water; DA	Pond, ~1.0-2.2 m wide trough, low elevated rims; located 4.4 m E of 21-31
Distance from transect/ plot (m)		3.9 R	4.3 R	2.8 R	2.7 R	3.0 R	4.2 R	8.7 R	2.4 R	2.5 R	4.8 R	1.5 NW	1.8	1.6 W	1.6 E		1.6 N	1.5 N	1.6 W	2.1 R	1.8 R	3.0 L	3.5 R	2.6 R	3.2 R	2.1 R	3.0 R	4.1 R	2.7 R	5.5 R	3.6 R	2.3 R	2.7 R	4.4 E
Transect/ plot loca- tion (m)		34	40.4	51.9	64.4	74	98.4	99.4	151.8	174.4	188	21A-29	21A-31	21A-32	21A-33	21A-35/34	21A-36	21A-37	21A-39	0	33	40	46.2	49	83	94	1 05	128	141.1	166	168	170.7	194	Plot 21-31
Location accuracy		Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Approx.	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise
Latitude (WGS84 DD)		-148.449233	-148.449417	-148.449631	-148.450089	-148.450364	-148.450883	-148.45105	-148.452133	-148.452942	-148.453169	-148.452155	-148.451213	-148.44873	-148.449821	-148.450158	-148.450413	-148.451235	-148.451491	-148.442528	-148.443322	-148.44345	-148.443686	-148.443736	-148.444589	-148.444828	-148.445122	-148.445689	-148.446011	-148.44665	-148.446667	-148.446722	-148.447294	-148.442611
Latitude (WGS84 DD)		70.231972	70.231981	70.231933	70.231919	70.231911	70.231872	70.231903	70.231811	70.231736	70.23175	70.23188	70.231905	70.23231	70.232334	70.232498	70.232365	70.232162	70.232042	70.230822	70.230714	70.230653	70.230683	70.230669	70.230564	70.230517	70.230486	70.230422	70.230367	70.230308	70.230286	70.230264	70.230194	70.230486
Transect ID		T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
Year drilled		2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021
Borehole ID	NIRPO SITE	T6-34T	T6-40T	T6-52T	T6-64T	T6-74T	T6-98T	T6-99C	T6-152T	T6-174T	T6-188T	Т6-21А-29	T6-21A-31	T6-21A-32	T6-21A-33	T6-21A-35&34	T6-21A-36	T6-21A-37	T6-21A-39	T7-0T	T7-33T	T7-40C	T7-46T	Т7-49Т	T7-83T	Т7-94Т	T7-105T	T7-128T	T7-141T	T7-166C	Т7-168Т	T7-171T	Т7-194Т	T7-XT

Borehole	Year	Transect	Latitude (WGS84	Latitude (WGS84	Location	Transect/ plot loca-	Distance from transect/	
₽	drilled	₽	DD)	DD)	accuracy	tion (m)	plot (m)	Site description and notes
T8-2C	2021	T8	70.231719	-148.456833	Approx.	2.5	6.5 R	Low-centered polygon
T8-6T	2021	T8	70.231675	-148.456894	Approx.	9	2.1 R	Wet trough, ~0.6 m wide, ~0.2 deep, low elevated rims ~0.6-0.8 wide; low-centered polygon
T8-15T	2021	Т8	70.231619	-148.457139	Approx.	15	4.3 R	Wet trough, ~0.8 m wide, ~0.2 deep, elevated rims ~0.5-0.8 wide; low-centered polygon; stringbog
T8-30T	2021	T8	70.231544	-148.457489	Approx.	29.8	2.6 R	Trough partially filled with water, ~0.6 wide, elevated rims ~0.1-0.15 above water; E rim ~0.6 wide, W rim ~0.8 wide; ~1cw-centered polygon
T8-30T-2	2021	T8	n.d.	n.d.				E rim, ~0.55 m from T8-30T, ~0.1 above the water (almost on top)
T8-30T-3	2021	T8	n.d.	n.d.			ı	W rim, ~0.4 m from T8-30T, ~0.05 above the water (slope of the rim)
T8-92T	2021	T8	70.231261	-148.459031	Approx.	92	3.2 R	Dry trough, \sim 0.4 wide, \sim 0.1 deep, poorly developed rims; poorly developed polygons near the bird mound
T8-192C	2021	T8	70.230897	-148.461289	Approx.	192	6.1 R	Wet marl area, no distinctive polygons, random mounds, ridges
Т9-0Т	2021	T9	70.232222	-148.454819	Approx.	0	2.5 R	Wet trough, ~0.8-0.9 m wide, ~0.3 m deep, no elevated rims
T9-5T	2021	T9	70.232217	-148.454972	Approx.	5.4	2.9 R	Dry trough, ~0.2 m wide, ~0.2 m deep
T9-8C	2021	T9	70.232192	-148.454972	Approx.	8	4.5 R	Center of a small polygon
T9-21T	2021	T9	70.232169	-148.455367	Approx.	21	2.9 R	Wet trough, deep, narrow, ~0.4 deep, <0.5 wide
T9-32T	2021	T9	70.232108	-148.455689	Approx.	31.8	3.4 R	Dry trough, ~1.4 m wide, ~0.1-0.2 m deep, no elevated rims
T9-39T	2021	T9	70.232086	-148.455811	Approx.	38.8	2.8 R	Dry trough, ~0.8-1.0 m wide, ~0.2-0.3 m deep, poorly developed elevated rims, small flat/high-centered polygons
T9-54T	2021	T9	70.232078	-148.456117	Approx.	53.7	2.8 R	Dry trough, ~0.6 m wide, ~0.1 m deep
T9-95T	2021	T9	70.231942	-148.457153	Approx.	95.2	2.6 R	Wet trough, ~0.6 m wide, ~0.2 m deep; elevated rims ~0.7-1.0 wide, ~0.1-0.2 above the wet polygon center
Jorgenson site								
JS-21A-01	2021	SL	70.229583	-148.427575	Approx.	21A-01	1.5 NW	Pond
JS-21A-02	2021	SL	70.228207	-148.426331	Approx.	21A-02	1.6 S	Pond
JS-21A-03	2021	SL	70.228879	-148.424806	Approx.	21A-03	1.6 E	Pond
DA3 / 21A-06	2011, 2019	SL	70.229302	-148.42422	Approx.	21A-06	~3	Pond
DA2 / 21A-08	2011, 2019	SL	70.22923	-148.423403	Approx.	21A-08	~3	Pond
SI3 / 21A-10	2011, 2019	SL	70.22919	-148.42237	Approx.	21A-10	~4	Pond
SI5 / 21A-11	2012, 2019	SL	70.229065	-148.4215	Approx.	21A-11	~4.5	Pond
DA1, DA1-B / 21A-14	2011, 2019	SĽ	70.22903	-148.42111	Approx.	21A-14	2	Pond
JS-21A-15	2021	SL	70.229719	-148.418237	Approx.	21A-15	1.5 E	Pond
Colleen site								
T1-5T-1	2014, 2020	T1	70.223133	-148.4710251	Precise	T1-5-T	Near	
T1-10T-1	2014, 2020	T1	70.2231487	-148.470794	Precise	T1-10-T	Near	
T1-10T-2	2014, 2020	T1	70.2231802	-148.4707269	Precise	T1-10-T	Near	
T1-25T-1	2014, 2020	T1	70.223257	-148.4705657	Precise	T1-25-T	Near	
T1-50T-2	2014, 2020	Γ	70.2234443	-148.4702107	Precise	T1-50-T	Near	
T1-50T-5	2014, 2020	Γ	70.2234547	-148.4702169	Precise	T1-50-T	Near	
T1-50T-7	2014, 2020	Γ	70.22357	-148.4702785	Precise	T1-50-T	Near	
T1-50T-9	2014, 2020	T1	70.2233616	-148.4704774	Precise	T1-50-T	Near	
T1-100T-1	2014, 2020	T1	70.2238768	-148.4699907	Precise	T1-100-T	Near	

Table A7.1 (continued)

															5 cm																	
	Site description and notes			021 location: 0.4 m W	021 location: 0.4 m W	221 location: 0.4 m E	21 location: 0.4 m W	121 location: 0.4 m W	21 location: 0.4 m S			21 location: 0.4 m W		121 location: 0.4 m NW	art of 15m transect; 37 m N of Hwy; 100 m E of T4 transect line; Low-centered polygon; water depth !		ater depth 8 cm	id of 15m transect; no borehole	21 location: 0.4 m N	121 location: 0.4 m S				21 location: 0.4 m S					21 location: 0.4 m NW			01 location: 0.4 m F. several cm above water level
Distance from transect/	plot (m)		3.7 R	1.9 R 2	2.0 R 2	3.1 R 2	3.0 R 2	5.3 R 2	0.9 R 2	3.0 R	4.7 R	1.4 R 2	15.0 R	0.6 R 2	0	S	9	15 E	2.6 R 2	1.5 R 2	2.7 R	2.5 R	1.6 R	1.1 R 2	2.5 R	3.2 R	2.7 R	4.2 R	1.0 R 2	2.8 R	4.8 R	3.6R 2
Transect/ I plot loca-	tion (m)		11.7	16.5	32.2	50.5	70.3	70.4	84.1	83.7	0.06	94.2	100.7	101.1	T4-0	T4-0	T4-0	T4-0	26.7	39.7	40.3	50	50.5	59.5	68.9	69.6	72.9	88.3	93	94.5	100.5	100.6
Location	accuracy		Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Approx.	Approx.	Approx.	Approx.	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise	Precise		Precise	Precise
Latitude (WGS84	DD)		-148.423934	-148.423815	-148.423546	-148.423252	-148.422909	-148.422953	-148.422628	-148.422695	-148.422623	-148.422464	-148.422623	-148.422329	-148.423008	n.d.	n.d.	-148.423187	-148.426747	-148.427071	-148.427072	-148.427307	-148.427329	-148.42755	-148.42776	-148.427769	-148.427853	-148.428206	-148.428355	n.d.	-148.428492	-148.428509
Latitude (WGS84	(DD)		70.196542	70.19652	70.196412	70.196282	70.196148	70.196134	70.196066	70.196051	70.195998	70.195995	70.195871	70.195953	70.197301	n.d.	n.d.	70.19717	70.195855	70.195895	70.195907	70.195942	70.195936	70.195966	70.196013	70.196022	70.19603	70.1961	70.196092	n.d.	70.196151	70.196141
Transect	₽		T3	T3	Т3	T3	T3	T3	T3	T3	T3	T3	T3	T3	T4	T4	T4	T4	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5	T5
Year	drilled	Ŀ.	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2020	2020	2020	2020	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2015, 2021	2016, 2021	2015, 2021	2015, 2021
Borehole	٩	AIRPORT SIT.	T3-11.7	T3-16.5	T3-32.2	T3-50.5	T3-70.3	T3-70.4	T3-84.1	T3-83.7	T3-90.0	T3-94.2	T3-100.7	T3-101.1	T4-0	T4-500	T4-600	T4-1500	T5-26.7	T5-39.7	T5-40.3	T5-50.0	T5-50.5	T5-59.5	T5-68.9	T5-69.6	T5-72.9	T5-88.3	T5-93.0	T5-94.5	T5-100.5	T5-100.6

Table A7.1 (continued)

lirport sites, Prudhoe Bay, Alaska, 24 August–5 September 2021. Polgyon	
and ground-ice content of soil sampled from permafrost boreholes, NIRPO, Jorgenson and Airp	ryostratigraphic unit: Code descriptions are listed below the table.
Table A7.2. Cryostratigraphy, moisture c	feature: Center (C), rim (R), trough (T). C.

Notes				high-centered polygon, limnic			94-110 cm horizon is peat									105-130 cm horizon is peat							70-85 cm horizon is peat				Low-centered polygon			EIC is probably too high	EIC is probably too high	EIC is probably too high	EIC is probably too high	wet marl area	limnic	EIC is probably too high	EIC is probably too high	EIC is probably too high
Excess ice content, EIC (% vol)		16	16	0	0	0	31	65	66	24	4	30	7.1	1.8	44	23	59	16	49	44	5.4	25	56	31	64	66	33	18	44	24	28	58	54	13	36	53	34	17
Volumetric mois- ture content, VMC (% vol)		76	73	71	29	78	81	06	89	29	81	85	82	77	89	84	88	78	82	71	71	85	87	85	92	90	86	77	72	59	57	81	78	77	87	78	62	41
Gravimetric moisture content, GMC (% wt)		140	106	112	168	218	191	352	381	169	193	252	199	206	379	314	321	159	181	85	112	264	303	330	549	393	362	155	103	52	46	166	126	149	289	125	57	25
Soil texture		organic-rich silt, marl	organic-rich silt, marl	organic-rich silt	organic-rich silt, ice poor	organic-rich silt, ice poor	organic-rich silty sand	organic-rich silty sand	organic-rich silty sand	silty peat, organic-rich silt	peat, organic-rich silt	organic-rich silt with peat inclusions	peat, silty sand	peat, silty sand	silty sand, peat	organic-rich silty sand, peat	organic-rich silty sand, peat	peat, silty sand	silty sand with gravel, peat inclusions	organic-rich silty sand, peat	organic-rich silty sand, peat	organic-rich sandy silt, peat	organic-rich silt	organic-rich silt	silty sand with organic inclusions	silty sand	silty sand	silty sand with peat inclusions	sand, gravel	organic-rich silt	organic-rich silt with peat inclusions	silty sand	silty sand	sand, gravel				
Cryostratigraphic unit		Ц	4	μ	SP	SP	QSP	QSP	QSP	Ш	Ц	L	Ļ	Ţ	Ц	QSP	QSP	L	Ц	Ш	Γ	Ш	QSP	QSP	QSP	QSP	IL?	SP	SP	PSP?	PSP?	SP	SP	Ц	Ļ	SP	SP	SP
Sample depth (cm)		38-44	54-62	50-56	68-74	88-94	111-118	122-130	134-141	54-61	43-49	52-62	44-49	55-62	66-77	105-112	120-130	44-52	47-52	46-50	58-65	62-70	87-97	115-123	130-140	150-158	57-67	79-88	107-117	120-126	136-144	162-169	178-185	47-53	64-74	84-93	105-111	123-128
Polygon feature		Т	μ	U	U	U	U	U	U	Ь	Ρ	4	μ	υ	υ	υ	υ	ь	μ	Т	Т	С	U	υ	С	С	C	C	С	C	C	C	C	U	U	υ	υ	U
Borehole ID	NIRPO SITE	Т6-98Т		T6-99C	I	I	I	I	I	T6-21A-31	T6-21A-35-34	Ι	T7-33T	T7-40C	Ι	Ι	I	T7-83T	T7-94T	Т7-105Т		T7-166C		Ι			T8-2C							T8-192C	I	I	1	

-		2
		3
	٥	J
	-	2
	5	2
4		5
1	5	2
	С	2
J	C	5
•		1
٢	•	•
<	1	5
_	٩	2
_	C	2
ŕ	ſ	3

Boreholo	Dolygon	olame	Crucetrationaphic		Gravimetric	Volumetric mois-	Excess ice	
	feature	depth (cm)	unit unit	Soil texture	GMC (% wt)	VMC (% vol)	EIC (% vol)	Notes
T9-8C	C	41-47	ΤL	organic-rich silt	162	78	0	limnic
	υ	60-66	SP	organic-rich silt	264	81	17	limnic, subaquatic SP
	C	78-85	SP	organic-rich silt	493	89	44	
	C	100-109	SP	organic-rich silt	276	86	35	
	υ	127-134	SP	organic-rich silt	325	88	40	
	C	142-148	SP	organic-rich silt	176	80	28	silty sand from ~140 cm
T9-32T	Т	45-52	TL	organic-rich silt, marl	128	74	0	limnic
JORGENSON	SITE							
JS-21A-02	Р	48-55	Ц	organic-rich silt with peat inclusions	133	74.8	4.8	
AIRPORT SITE	(REDRILLING	(1						
T5-39.7 (2021)	Т	59-64	11	silty sand, marl	158	77.8	20.0	

. . . .

.

Notes: **Cryostratigraphic unit**: AL – active layer, fice-poor; often with dry friable soil horizons closer to the base of the AL); TL – transient layer (relatively ice-poor, mainly with reticulate and/or braided cryostruc-tures); ALF-TL – undifferentiated AL-TL (no distinctive boundary between AL and TL); IL – intermediate layer, usually ice rich (thick belts, mainly ataxitic cryostructure); IL-PD – intermediate layer, poorly developed (relatively ice-poor, no well-developed belts); PSP – para-syngenetic permafrost (refrozen tailk); OSP – quasi-syngenetic permafrost (buried ILs, usually ice-rich); SP – syngenetic permafrost (thin belts, micro-cryostructures).

Ļ	
ы	Е.
б	Z
ō	s (
6	S
5	5
2	<u>i</u>
g	£
ar	2
ē.	ž
sit	å
ť	é
õ	÷
5	9
Ā	2
5	÷
6	<i>d</i> :
Ž	ð
ť	≥
Ξ	ø
S	£
5	
is.	2
a	Ū
9	ð
Ξ	<u>ō</u>
8	ba
6	ž
.5	e.
p	Sit
Ľ,	<u>S</u>
ĕ	5
	5
21	8
Q.	
2	Ū.
e e	F
5	e,
6	2.
5	é
je,	б
Ŷ	Ŷ
st	S.
3	a
ž	ž
4	ă
ŝ	E.
Ϊţ	Ę,
Š	Ť,
ē,	N
5	5
Z	e B
ğ	.2
6	g
ŏ	D.
÷	≯
ă	
ď.	ິ
Ś	
-	.Ž
2	S
ð	ğ
ō	Ξ
9	0
÷	ž
<i>.</i> З	Ę
Ð	a'
2	Ω
2	3
.ğ	£
ģ	ğ
<u>Ş</u> .	ð
S	<u>a</u>
2	ğ
5	a
Š	~
2	E
ď	4
S	Ę
e,	<u>ö</u>
િં	t
e.	$\hat{\Box}$
<u>, </u>	Ľ
ŭ	e.
λŧ	'n
5	9
þ	ŭ
ы	2
Ž	2
fr	ō.
Jf	9
Š	e
Se	il:
S	ž
ŝ	2
Ľ,	ŭ
'n,	N
۲.	a.
, m	at
\triangleright	ġ
A d	ite
Ř	SI
de	И

Notes and results					Probably WI+TCI on top						Soil 81-104; IW from 104; SA	50-52 – destroyed core	49-54 – destroyed core	45-51 – destroyed core			41-47 – destroyed core	48-49 - destroyed core	Destroyed core	1 degrading wedge	3 degrading wedges	No degrading wedges	3 degrading wedges																2 degrading wedges
TL+IL (PL2) (cm)		7	0	4	0	9	14	24	7	9	4	9	12	13	0	21	15	4	9	9.6	8.4	9.3	7.7	n.d.	n.d.	15	9	5	17	17	19	22	6	0	5	S	0	5	9.6
Depth to massive ice (cm)		N/A	47	47	41	54	53	62	51	47	50	56	61	58	41	63	56	52	52	54.9	52.4	52.0	52.7	n.d.	n.d.	62	50	43	55	52	52	65	55	51	62	54	49	48	53.7
Intermediate layer (IL) (PL3) (cm)		0	0	0	0	-	3	8	0	0	0	0	7	7	0	13	6	4	0	5.0	3.1	1.7	4.0	>65?	>101?	0	0	0	6	4	5	19	0	0	0	0	0	0	2.8
Transient layer (TL) (cm)		7	0	4	0	S	11	16	7	9	4	9	ъ	9	0	œ	9	0	9	4.6	5.3	7.6	3.7	œ	4?	15	6	5	8	13	14	3	6	0	5	ъ	0	5	6.8
Thaw depth (ALT) (cm)		50	47	43	41	48	39	38	44	41	46	50	49	45	41	42	41	48	46	45.3	44.1	42.7	45.0	53	53	47	44	38	38	35	33	43	46	51	57	49	49	43	44.1
Water depth (cm)		0	21	0	20	0	0	0	0	2	9	46	45	30	35	55	45	46	39	42.6	22.9	1.1	38.2	-	0	0	23	6	0	25	11	0	0	12	-	10	14	17	9.4
Borehole depth (cm)		141	73	79	124	73	77	81	81	75	120	95	66	77	89	90	79	67	82	88.5	87.71	83.7	90.5	130	158	66	71	52	69	71	74	80	65	82	85	65	70	68	70.6
Micro- relief		υ	F	Т	н	⊢	Т	⊢	Т	⊢	⊢	٩	٩	٩	Ч	٩	Ч	٩	Ч	P only	T + P	T dry	T + P wet	υ	υ	Т	Т	Т	Т	Т	г	Т	Т	Т	⊢	⊢	F	F	T only
Transect		T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	T6	Т6	T6	17	T7	T7	T7	T7	T7	17	Т7	Τ7	Т7	Т7	17	17	17	1	4
Date	LUDING PONDS, 2021	8/30/2021	9/1/2021	9/1/2021	8/31/2021	8/31/2021	8/31/2021	8/30/2021	8/29/2021	8/29/2021	8/29/2021	8/31/2021	8/31/2021	9/1/2021	9/1/2021	9/1/2021	8/31/2021	8/31/2021	8/31/2021	Ponds	Troughs + ponds	Water <7 cm	Water ≥20 cm	8/26/2021	8/24/2021	8/26/2021	8/26/2021	8/26/2021	8/25/2021	8/25/2021	8/25/2021	8/25/2021	8/24/2021	8/24/2021	8/24/2021	8/24/2021	8/24/2021	8/26/2021	Troughs
Borehole ID	NIRPO SITE, INC	T6-99C	T6-34T	T6-40T	T6-52T	T6-64T	Т6-74Т	Т6-98Т	T6-152T	T6-174T	T6-188T	T6-21A-29	T6-21A-31	T6-21A-32	T6-21A-33	T6-21A-35&34	T6-21A-36	T6-21A-37	T6-21A-39	Mean (n=8)	Mean (n=17)	Mean (n=7)	Mean (n=10)	T7-40C	T7-166C	Т7-0Т	T7-33T	Т7-46Т	Т7-49Т	Т7-83Т	T7-94T	T7-105T	Т7-128Т	T7-141T	Т7-168Т	T7-171T	Т7-194Т	Т7-ХТ	Mean (n=13)

s and results									grading wedges																						n slightly different location in 2021: WI not TCI	9.3 EXCLUDED		ring, looks stable	m protective layer above IW	ible ice	m protective layer, IW	or soil
Note									No de																						DA2 ir	73-89	N	No coi	~0.2 c	no visi	~0.5 c	ice po
TL+IL (PL2) (cm)	32	27	N/A	4	œ	11	4	5	7.0	7?	9	4	7	10	11	5	8	7.3		8	6	13						9	9.0				14	,	0	11	0.5	4
Depth to massive ice (cm)	N/A	N/A	N/A	48	42	45	41	41	42.3	N/A	43	41	31	53	45	41	47	43.0		58	55	59	66	98	50	60	58	60	58.0	62.7			67		60	69	51.5	56
Intermediate layer (IL) (PL3) (cm)	20	21	0	0	-	0	0	0	0.3	03	1	0	0	0	0	1	2	0.6		-	0	0	0	10	0	3	4	0	0.3	2.0			14	,	0	0	0	0
Transient layer (TL) (cm)	12	9	6	4	7	11	4	5	6.8	7	5	4	7	10	11	4	6	6.7		7	6	13						6	8.8				0		0	11	0.5	4
Thaw depth (ALT) (cm)	46	47	47	44	34	34	37	36	35.3	41	37	37	24	43	34	36	39	35.7		49	46	46	34	40	35	42	33	54	48.8				53	52	60	58	51	52
Water depth (cm)	m	-	0	0	-	0	9	0	1.8	0	1	0	-	0	0	0	1	0.4		49	49	63	49	42	65	20	65	34	48.8	48.4			23	19	0	0	0	0
Borehole depth (cm)	169	128	85	78	49	76	69	59	63.3	149	81	69	62	65	61	74	89	71.6		81	76	71	93	117	85	82	90	81	77.3	86.2	82.4		81		92	75	79	78
Micro- relief	υ	υ	т	н	н	т	н	т	T only	U	Т	т	н	т	Т	т	Т	T only		Ч	٩	٩	Р	٩	Р	Ч	Ч	Ч	٩	Р	Р		н	г	г	н	н	н
Transect	T8	Т9	Т9	T9	T9	T9	Т9	T9	Т9	T9		SL	SĽ	SĽ	JS	SĽ	JS	SL	SL	SL	SL	SL	SL	5 & 2021	ц	Щ	Щ	E	ш	T3								
Date	8/28/2021	8/29/2021	8/28/2021	8/28/2021	8/27/2021	8/28/2021	8/28/2021	8/28/2021	Troughs (T8-30T-2&3 excl.)	8/27/2021	8/26/2021	8/26/2021	8/27/2021	8/27/2021	8/27/2021	8/27/2021	8/27/2021	Troughs	SITE PONDS, 2019 & 2021	9/3/2021	9/3/2021	9/3/2021	7/11/2019	7/11/2019	7/11/2019	7/11/2019	7/13/2019	9/3/2021	2021	2019 + 2021	2019 + 2021 (DA2 excl.)	, T3 & T5 REDRILLING, 201.	9/22/2015	9/4/2021	9/18/2015	9/4/2021	9/18/2015	9/4/2021
Borehole ID	T8-2C	T8-192C	T8-30T-2	T8-30T-3	T8-6T	T8-15T	T8-30T	T8-92T	Mean (n=4)	T9-8C	T9-0T	Т9-5Т	T9-21T	T9-32T	T9-39T	T9-54T	T9-95T	Mean (n=7)	JORGENSON 5	JS21A-01	JS21A-02	JS21A-03	DA3 / 21A-06	DA2 / 21A-08	SI3 / 21A-10	SI5 / 21A-11	DA1 / 21A-14	JS21A-15	Mean (n=4)	Mean (n=9)	Mean (n=8)	AIRPORT SITE,	ТЗ-11.7Т	T3-11.7T/21	ТЗ-16.5Т	T3-16.5T/21	T3-32.2T	T3-32.2T/21

Table A7.3 (continued)

Borehole ID	Date	Transect	Micro- relief	Borehole depth (cm)	Water depth (cm)	Thaw depth (ALT) (cm)	Transient layer (TL) (cm)	Intermediate layer (IL) (PL3) (cm)	Depth to massive ice (cm)	TL+IL (PL2) (cm)	Notes and results
ТЗ-50.5Т	9/18/2015	Ц	F	75	0	43	0	0	43	0	~0.2 cm protective layer, IW
T3-50.5T/21	9/4/2021	T3	г	78	0	48	ĸ	0	51	ĸ	
T3-70.3T	9/18/2015	T3	н	92	0	62	0	0	62	0	IW was actively degrading in 2015
T3-70.3T/21	9/4/2021	T3	н	83	0	59	6	0	68	6	WI+TCI
T3-70.4T	9/22/2015	T3	н	60	27	47	0	0	47	0	IW was actively degrading in 2015
T3-70.4T/21	9/4/2021	T3	н	79	26	49	-	4	54	5	WI
T3-83.7T	9/18/2015	T3	Mound in T	109	0	65	-	0	66	-	IW+CW 66-109;"mound"
T3-83.7T/21	9/4/2021	T3	Mound in T		0	64					No coring, looks stable
T3-84.1	9/18/2015	T3	н	92	0	62	-	0	63	-	~1-1.5 cm protective layer, IW
T3-84.1/21	9/4/2021	T3	н	87	0	64	0	0	64	0	Degrading IW; slightly above water level
T3-90.0	9/18/2015	T3	н	88	0	48	0.5	0	48.5	0.5	~0.5 cm protective layer, IW
T3-90.0	9/4/2021	T3	н		0	99					No coring, looks stable
T3-94.2	9/19/2015	T3	н	79	0	48	0	0	48	0	~0.2 cm protective layer, IW
T3-94.2/21	9/4/2021	T3	н	62	0	46	0	4	50	4	IW; IL-PD, i~30%
T3-100.7	9/19/2015	T3	Ridge in T	135	0	62	0	10	72	10	TCI 72-89, IW 106-135; elevated "ridge" in the trough
T3-100.7/21	9/4/2021	T3	Ridge in T		0	69	,			ı	No coring, looks stable
T3-101.1	9/19/2015	T3	н	06	0	55	0	0	55	0	~0.2 cm protective layer, IW
T3-101.1/21	9/4/2021	T3	н	88	0	62	1	0	63	-	WI
T3-100.7	9/19/2015	T3	Ridge in T	135	0	62	0	10	72	10	TCI 72-89, IW 106-135; elevated "ridge" in the trough
T3-100.7/21	9/4/2021	T3	Ridge in T		0	69					No coring, looks stable
Mean (n=12)	2015	T3	н	91.8	4.2	54.7	0.3	2.0	56.9	2.3	
Mean (n=12)	2021	T3	F		3.8	57.4					Water and thaw depths only, 2021
Mean (n=8)	2015, redrilled only	T3	н	86.1	3.4	53.5	0.2	0.0	53.7	0.2	Only boreholes that were redrilled in 2021
Mean (n=8)	2021, redrilled only	T3	F	78.8	3.3	54.8	3.6	1.0	59.4	4.6	Only boreholes that were redrilled in 2021
T5-26.7T	9/20/2015	T5	н	63	10	53	0	2	55	2	IW
T5-26.7T/21	9/5/2021	T5	г	64	2	45	10	ĸ	58	13	Ice poor; thin belt at 48
T5-39.7T	9/20/2015	T5	н	92	8	61	0.5	0	61.5	0.5	~0.5 cm protective layer, IW
T5-39.7T/21	9/5/2021	T5	Т	71	5	57	3	6	66	6	
T5-40.3T	9/20/2015	T5	Mound in T	104	0	77	-	0	78	-	IW; "mound"
T5-40.3T/21	9/5/2021	T5	Mound in T		0	64			-		No coring, looks stable, mound, ~0.4 m above water
T5-50.0T	9/22/2015	T5	Т	118	27	48	0	ĸ	51	ŝ	TCI 51-66, IW 95-118
T5-50.0T/21	9/5/2021	T5	г		5	53		,	,		No coring, looks stable, less water
T5-50.5T	9/20/2015	T5	Mound in T	150	0	69	4	61	134	65	IW; "mound";was excluded
T5-50.5T/21	9/5/2021	T5	Mound in T		0	64					No coring, looks stable, mound
T5-59.5T	9/20/2015	T5	н	61	11	48	0	2	50	2	M
T5-59.5T/21	9/5/2021	T5	г	69	0	46	10	0	56	10	ice poor
Т5-68.9Т	9/21/2015	T5	н	57	15	36	0	9	42	9	IW+TCI?; belt at 36
T5-68.9T/21	9/5/2021	T5	Т		0	42			1	'	No coring, looks stable, water level

Table A7.3 (continued)

121

(continued)	
A7.3	
Table	

T5-69.6T9/21/2015T5Ridge in T100714277T5-69.67/219/5/2021T5Ridge in T-066T5-729179/5/20215T5T9/305106T5-7291719/5/2021T5T-0661066T5-72917219/5/2021T5T-066106606 <td< th=""><th>Micro- depth depth : relief (cm) (u</th><th>Thaw Transient depth layer (TL) ALT) (cm) (cm)</th><th>Intermediate layer (IL) m (PL3) (cm)</th><th>Depth to TL+ assive ice (PL (cm) (cm</th><th>L) Notes and results</th></td<>	Micro- depth depth : relief (cm) (u	Thaw Transient depth layer (TL) ALT) (cm) (cm)	Intermediate layer (IL) m (PL3) (cm)	Depth to TL+ assive ice (PL (cm) (cm	L) Notes and results
T5-63617/21 9/5/2021 T5 Ridge inT - 0 66 -	Ridge in T 110 0	71 4	2	77 6	IW; elevated "ridge" in the trough; belt at 75
T5-729T 9/20/2015 T5 T 93 0 51 0 6 57 T5-729T/21 9/5/2021 T5 T - 0 54 - - - T5-729T/21 9/5/2021 T5 T - 0 54 -	Ridge in T - 0		ı		No coring, looks stable, mound
T5-729T/21 9/5/2021 T5 - 0 54 - - - T5-88.3T/21 9/2/2021 T5 T 66 10 46 0 5 51 T5-88.3T/21 9/5/2021 T5 T - 0 45 0 5 51 T5-93.0T 9/5/2021 T5 T 50 27 45 0 0 45 5 5 T5-93.0T/21 9/5/2021 T5 T 50 27 45 66 0 6 47 5 5 T5-93.0T/21 9/5/2021 T5 T 52 23 47 0 0 67 47 T5-94.57 9/5/2021 T5 T 55 73 47 0 0 67 47 T5-94.57 9/2/2021 T5 Ridge inT 13 0 0 13 190C T5-90.57 15 Ridge inT 13	T 93 0	51 0	9	57 6	IW, IL, belt at 51
T5-88.3T 9/21/2015 T5 T 66 10 46 0 5 5 T5-88.3T/21 9/5/2021 T5 T - 0 45 - - - T5-88.3T/21 9/5/2021 T5 T - 0 45 0 6 45 -<	Т - 0	54 -	ı		No coring, looks stable, no water
T5-88.37/21 9/5/2021 T5 T - 0 45 -	Т 66 10	46 0	5	51 5	IW, ice-rich IL
T5-930T 9/21/2015 T5 T 50 27 45 0 6 45 5	Т - 0	45 -	ı		No coring, looks stable, no water
T5-930T/21 9/5/2021 T5 T 72 20 46 8 0 54 T5-94.5 $3/28/2016$ T5 T 55 73 47 0 0 47 T5-94.5 $3/28/2016$ T5 T 55 73 47 0 0 47 T5-94.5/21 $9/5/2021$ T5 Ridge inT 113 0 67 10 13 90 T5-100.5T/21 $9/5/2021$ T5 Ridge inT 113 0 67 10 13 [90C) T5-100.6T/21 $9/5/2021$ T5 Ridge inT - 0 55 - <td>T 50 27</td> <td>45 0</td> <td>0</td> <td>45 0</td> <td>IW was actively degrading in 2015</td>	T 50 27	45 0	0	45 0	IW was actively degrading in 2015
T5-94.5 $3/28/2016$ T5 T 55 73 47 0 0 47 T5-94.5/21 $9/5/2021$ T5 T - 44 56 - - - T5-94.5/21 $9/5/2021$ T5 T - 44 56 - - - - T5-100.5T $9/21/2015$ T5 Ridge inT 113 0 67 10 13 [90C] T5-100.5T/21 $9/5/2021$ T5 Ridge inT - 0 57 - -	T 72 20	46 8	0	54 8	Ice poor TL
T5-94.5/21 Y5 T - 44 56 - - - T5-100.5T $9/21/2015$ T5 Ridge in T 113 0 67 10 13 [90C] T5-100.5T/21 $9/5/2021$ T5 Ridge in T 113 0 67 10 13 [90C] T5-100.5T/21 9/5/2021 T5 T 62 17 36 12 3 51 T5-100.6T/21 9/5/2021 T5 T 80 0 47 17 0 64 Mean (n=11) 2015 T5 T 2.9 51.4 16 562 562 Mean (n=11) 2021 T5 T 2.9 51.4 16 562 562 Mean (n=11) 2021 T5 T 5.9 51.4 16 16 16 562 Mean (n=11) 2021 T5 T 5.9 51.4 16 16 17 56 562 Mean (n=11) 2021 T5 T 5.9 51.4	T 55 73	47 0	0	47 0	Winter coring; IW prob. actively degrading in 2015-16
T5-100.5T 9/21/2015 T5 Ridge inT 113 0 67 10 13 [90Cl T5-100.5T/21 9/5/2021 T5 Ridge inT - 0 55 - - - T5-100.6T/21 9/5/2021 T5 T 62 17 36 12 3 51 T5-100.6T/21 9/5/2021 T5 T 80 0 47 17 0 64 Mean (n=11) 2015 T5 T 79.6 11.4 52.0 1.6 2.6 56.2 Mean (n=11) 2021 T5 T 2.9 51.4 1.6 2.6 56.2 Mean (n=11) 2021 T5 T 2.9 51.4 1.6 7.6 56.2	Т - 44		'	-	No coring; stabilization??? (less water)
T5-100.57/21 9/5/2021 T5 Ridge in T - 0 55 - <th< td=""><td>Ridge in T 113 0</td><td>67 10</td><td>13</td><td>[90 CW?] 23</td><td>"Ridge" in trough; CW? from 90 (vert. c/s) excluded</td></th<>	Ridge in T 113 0	67 10	13	[90 CW?] 23	"Ridge" in trough; CW? from 90 (vert. c/s) excluded
T5-100.6T 9/21/2015 T5 T 62 17 36 12 3 51 T5-100.6T/21 9/5/2021 T5 T 80 0 47 17 0 64 Mean (n=11) 2015 T5 T 79.6 11.4 52.0 1.6 2.6 562 Mean (n=11) 2021 T5 T 2.9 51.4 1 2.6 562 Mean (n=11) 2021 T5 T 5.9 51.4 1 5.6 562	Ridge in T - 0		'	-	No coring, looks stable
T5-100.6T/21 9/5/2021 T5 T 80 0 47 17 0 64 Mean (n=11) 2015 T5 T 79.6 11.4 52.0 1.6 2.6 56.2 Mean (n=11) 2021 T5 T 2.9 51.4 5.6 56.2 Mean (n=21) 2021 T5 T 2.9 51.4 5.6 56.2 Mont (n=21) 2015 T5 T 2.9 51.4 5.6 56.2	Т 62 17	36 12	£	51 15	IW, distinctive IL 3 cm
Mean (n=1) 2015 T5 T 79.6 11.4 52.0 1.6 2.6 56.2 Mean (n=11) 2021 T5 T 2.9 51.4 1.4 50.0 1.6 50.6 56.2 Mean (n=-11) 2021 T5 T 2.9 51.4 1.4 50.6 50.6 Monte (n=-5) 2015 T5 T 2.9 51.4 1.4 50.6	T 80 0	47 17	0	64 17	No distinctive IL
Mean (n=11) 2021 T5 T 2.9 51.4 Monu (n=5) 2015 215 T 2.9 51.4	Т 79.6 11.4	52.0 1.6	2.6	56.2 4.	: T5-50.5, T5-100.5, and T5-94.5 excluded
Moon (n=E) 2015 wedwilled only TE T 656 116 486 25	Т 2.9	51.4			Water and thaw depths only, 2021
	T 65.6 14.6	48.6 2.5	1.4	52.5 3.	
Mean (n=5) 2021, redrilled only T5 T 71.2 5.4 48.2 9.6 1.8 59.6	T 71.2 5.4	48.2 9.6	1.8	59.6 11.	Less water than in 2015

ALASKA GEOBOTANY CENTER

The Alaska Geobotany Center (AGC) is dedicated to understanding northern ecosystems through the use of geographic information systems, remote sensing, field experiments, and cooperative team research projects. We share a commitment to excellence in field research and teaching with the goal of inspiring an appreciation of northern ecosystems and making our research and teaching relevant to societal issues and concerns, particularly issues relevant to the state of Alaska.

Alaska Geobotany Center Institute of Arctic Biology University of Alaska Fairbanks

P.O. Box 757000 Fairbanks, AK 99775-7000 Phone (907) 474-2459

www.geobotany.uaf.edu

