The Eurasia Arctic Transect: Vegetation-environment-permafrost relationships
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Abstract

The Eurasia Arctic Transect (EAT) is located in a key area of rapid change associated with data from zonal sites in each bioclimate subzone that could be used to help interpret remote- sensitive to erosion by landslides. Vegetation protects the permafrost from erosion by both
dramatic sea-ice loss in the Barents and Kara seas and extensive gas development on the sensing spectral data of the region; (2) examine the interactions between zonal climate, climate change and anthropogenic factors, so a primary interest was the relationship between
Yamal Peninsula. The EAT is 1500 km long, from Nadym, in the forest-tundra transition of permafrost, vegetation and soils along a continuous bioclimate gradient from treeline to the summer temperature, aboveground biomass, active-layer thickness, vegetation composition,
northwest Siberia, to Krenkel hydro-meteorological station, Hayes Island, Franz Jozef Land northernmost part of the Eurasian Arctic; and (3) compare this transect to a similar transect in biomass, and soil texture. Here we present an update on the key vegetation-environment-
(Fig. 1). The major reasons to establish the transect were to (1) develop a set of ground-based North America (Walker et al. 2011a). The permafrost on the Yamal Peninsula is exceptionally permafrost information from the ongoing EAT synthesis studies.
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insulative properties of the vegetative and organic soil layers occurrence can be 50-80% in saline clays (Leibman et al. Arctic sites at Krenkel are most distant geographically insulation capacity of the soil. The distribution of the biomass in the higher summer n-factors than winter n-factors. The
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| F?t ; : (&j’ bl areas with sandy soils, and excluded sites with saline clay. E, D, and C sites are all on the Yamal Peninsula and floristically types, foliar and woody‘compo‘nents, and live and dead components, generally lower summer n-factors for loamy sites
Zonal sites, ana poor correspondence on sanay si eS( ) quite Similar, but with clear south-north floristic trends. The all affect the total insulative value of the Vegetahon mat. with relat—ively thick organic |ayer5. The winter n-
biomass, while the secondary axis is correlated with a complex soils increased with summer warmth (SWI) along the EAT at about possibly because of small temperature differences
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