lce-wedge Degradation and Stabilization in the Prudhoe Bay Oilfield, Alaska (2011-2022)
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Previous studies Redrilling of 2011-2015 boreholes Main results of 2019-2022 studies

The Prudhoe Bay Oilfield (PBO) is located on the Arctic Coastal Plain of Alaska, USA, near the Beaufort In 2011-2015, more than 140 boreholes were drilled in ice-wedge troughs within all Prudhoe Bay study Totally, 52 boreholes were redrilled in 2019-2022 (Table 1). Overall, the depth to massive ice had

Sea coast. High ground-ice content and occurrence of large ice wedges make this area vulnerable to areas. Several years after initial studies, we reexamined our sites to detect changes in status of ice wedges Increased by 7.5 cm, and PL2 thickness had increased by 5.3 cm. Only 4 of 52 locations had some
thermokarst and thermal erosion. During the last decades, widespread degradation of ice wedges has been (Table 1). In 2019, we redrilled 21 boreholes at the undisturbed JS at the same locations where ice decrease In a depth to wedge ice, and 5 of 31 (excluding JS locations that were sampled in June and July)
observed across the Arctic, including the PBO (Shur et al., 2003; Jorgenson et al., 2006, 2015; Raynolds wedges had been either degrading or stabilizing during our initial studies in 2011 and 2012. In 2020, nine had some decrease In a thickness of PL2. Changes that had occurred within the study areas are Illustrated
et al., 2014; Walker et al., 2014, 2015, 2022; Liljedahl et al., 2016; Frost et al., 2018). In 2011-2015, we boreholes were redrilled at the CS (Transect T1) to study changes that had occurred since 2014. In 2021, by graphs in Figure 8. Based on the results of coring and visual assessment of coring sites (e.g., depth of
studied processes of ice-wedge degradation and stabilization in relation to changing climate and we redrilled 13 boreholes at the AS (Transects T3 and T5) at the same locations where we had already troughs and water depths), we divided all studied ice wedges into four classes that reflect changes in their
infrastructure in the PBO (Jorgenson et al., 2015; Kanevskiy et al., 2017, 2022; Walker et al., 2022). Field performed coring in 2015. In 2022, nine boreholes were redrilled at the CS (Transect T2). Initial status (degradation/stabilization): (1) ice wedges that have not experienced any significant changes;
work was performed within three study areas: one undisturbed (Jorgenson Site, JS) and two road-affected (2) ice wedges that have experienced degradation, detected by deeper troughs and thinner protective

Table 1. Results of redrilling of 2011-2015 boreholes within the Prudhoe Bay study areas.

(Colleen Site, CS, and Airport Site, AS) areas (Figures 1 and 2). layers; (3) ice wedges that have experienced stabilization, detected by thicker protective layers; and (4)
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