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Figure 5. Trends in thermokast for sample areas within the Prudhoe Bay oilfield 1970-2010. B Aquatic tundra (Types M4 + E1)
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Figure 9. (a) Overview of the transects T1 and T2. Note: red line mark the location of the transects NE and SW from the Spine Road. Position of center and trough permanent vegetation plots are marked as squares, and boreholes as white dots. (b) relative profiles of the transects T1 and T2. Note the 10x vertical exaggeration Figure 13. (a) Comparison of the average daily surface temperature at polygon centers (C) and troughs (T) at Colleen Site A for the time August 2014 to August 2015. (b) Com- increased with road proximity
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