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Following the discovery of oil at Prudhoe Bay in 1968, a series of 
environmental changes occurred that were the result of natural 
long-term processes and changes caused directly and indirect-
ly by infrastructure. Here we examine the changes associated 
with a road at Colleen Site A, near Deadhorse, Alaska (Fig. 1).

Most changes in landscapes along roads are caused by a com-
bination of (a) flooding due to the elevated road beds that in-
terrupt natural drainage flow patterns; (b) heavy road dust, 
which smothers the vegetation and changes the albedo of the 
tundra surface; and (c) snow banks that form along the edges 
of the elevated roads. All of these factors tend to raise soil tem-
peratures, which in turn increase the active layer thickness near 
roads, leading to roadside thermokarst (Fig. 2).
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Figure 1. The Lake Colleen region. False-color-infrared World View image 
(July 9, 2010). Note: red tones show areas of highly productive vegetation.
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Figure 2. Roadside disturbances related to dust and thermokarst.

An abrupt increase in the abundance 
of thermokarst features has been 
noted in two studies (Jorgenson et al. 
2006; Raynolds et al. 2014, Fig. 3).

The changes in non-infrastructure-re-
lated thermokarst are thought to be 
due to a combination of a long-term 
upward trend in summer warmth and 
exceptionally warm summers in 1989, 
1998, and 2012 when the active layer 
(layer of soil that thaws in summer) in-
creased in thickness and melted the 
tops of ice wedges (Fig. 4).

Figure 3. Trends in thermokast for sample areas within the Prudhoe Bay oilfield 1970-2010.

Figure 4. Time series of summer warmth. 
Summer warmth index (SWI) = sum of 
monthly mean temperatures > 0ºC.

Exceptionally warm summers 
occurred in 1989, 1998, and 

2012.

Summary of findings from the time series of aerial photos: 
• Prior to construction of the Spine Road in 1969, the Colleen site A study area had numerous 

scattered thermokarst pits indicating that the area had some thawing ice wedges at the in-
tersections of polygon troughs. The pattern of thermokarst changed very little between 1949 
and 1972. 

• The Spine Road was constructed in 1969, altering drainage patterns and introduced gravel 
and large quantities of dust to the tundra adjacent to the road, such that over the past 45 
years the pattern of thermokarst has changed dramatically.

• Thermokarst is now deepest and most extensive on the southwest side of the road, which is 
periodically flooded. Historical climate data and photos indicate that between 1989 and 2012 
a regional thawing of the ice-wedges occurred, increasing the extent of thermokarst on the 
both sides of the road.

Analysis Part A: Time series of the Lake Colleen Site A from 1949 to 2013
Six aerial photographs of Colleen Site A show the transition of the landscape between 1949 and 2013 (Fig. 5).  Figure 2 shows ground views of common roadside thermokarst 
that now occurs along the Spine Road.

Figure 5. Colleen Site A study area (as in Figure 1) time series 1949-2013, showing progression of change. Notes: The Spine Road was constructed in 1969 so does not appear on the 1949 image. 
Thin cloud cover obscures the small lake in the upper left in 1949, but most of the thermokarst pits that are present in 1972 are also visible on the 1949 image. Greatly expanded thermokarst is seen 
in 2006. The oil industry obtained aerial photographys of the road network nearly every year and we are now obtaining images to show the transition from the situation in 1979 to that in 2006.

Analysis Part B: Transects
Differences in the flooding regimes on the northeast and southwest sides of the road cause ma-
jor differences in the extent of thermokarst, microtopography, types of the vegetation (Fig. 6).

Figure 6. (a) Transect T1 looking NE from the Spine Road. Note the low-centered polygons with the distinct rims and less than 0.5 m of 
trough-center relief. (b) Degraded ice-wedge polygon troughs along Transect T2 on the SW side of the road. Note the lack of rims on the ice-
wedge polygon centers, greater than 0.5 m of trough-center relief, and lush sedge vegetation in the troughs and on the polygon centers.
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In 2014, two 200-m transects perpendicular to the Prudhoe Bay Spine Road were established. We measured the following along the transects at 1 m intervals within 100 m of the road and at 5 m intervals from 100 to 200 m 
from the road: surface elevation and water depth, vegetation type and surface geomorphology, depth of thaw (thaw probe), thickness of surface dust layer, height of vegetation, and leaf area index (Fig. 7). 
We also did vegetation and soil surveys at permanent plots in centers and troughs on both sides of the road, and examined ice-content in boreholes (Raynolds et al., 2014, and Kanevskiy et al., 2014; poster this conference).
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Figure 7. (a) Overview of the transects T1 and T2. Note: red line mark the location 
of the transects NE and SW from the Spine Road. Position of center and trough 
permanent vegetation plots are marked as squares, and boreholes as white dots. 
(b) relative profiles of the transects T1 and T2. Note the vertical exaggeration 1:10.  
(c) Microrelief and vegetation along the transects. (d) Graph showing the thaw 
depths, dust depths, and LAI measurements along the transects.

© BP, true color aerial photo of 2013

Summary of findings from the transects: 
• Transect T2 shows a nearly double trough to cen-

ter of polygon contrast (Fig. 8a) 
• Increased thaw depths at the south side of the 

road (T2) for all vegetation communities (Fig. 8b)
• Heigher average vegetation heights in overall and 

for all plant communities at the south side of the 
road (transect T2) (Fig. 8c)

• Transect T2 shows higher productivity compared 
to transect T1 expresed by higher LAI (Fig. 8d)

Information from the Colleen Site A studies, 
combined with the rich record of historical 
aerial photographs provide an excellent ba-
sis for examining the changes to this region.

Prior to construction of the Spine Road in 
1969, the Colleen site A study area had nu-
merous scattered thermokarst pits indicat-
ing that the area had some thawing ice wedg-
es at the intersections of polygon troughs. 
The pattern of thermokarst changed very 
little between 1949 and 1972. 

The Spine Road was constructed in 1969, 
altering drainage patterns and introduced 
gravel and large quantities of dust to the 
tundra adjacent to the road. Thermokarst 
is now deepest and most extensive on the 
southwest side of the road, which is period-
ically flooded. 

Historical climate data and photos indicate 
that between 1989 and 2012 a regional 
thawing of the ice-wedges occurred, in-
creasing the extent of thermokarst on both 
sides of the road. Aerial photos between 
1979 and 2010 are needed to better exam-
ine the variation in thermokarst with the re-
spect to the climate record.

The regional warming, flooding, road dust, 
and snow drifts have all contributed to cre-
ating warmer soil temperatures, and deep-
er active layers near the road. These fac-
tors have all contributed in different ways to 
alteration of the plant canopy. The altered 
plant canopies in turn further alter the sur-
face albedo and the ground temperatures. 

The implications of these changes to total 
ecosystem function need to be thoroughly 
investigated.
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Figure 8. Differences in (a) trough-polygon center contrast, (b) thaw depth, (c) 
vegetation height, and (d) Leaf Area Index (LAI) between the transects T1 and T2. 
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