Vegetation Biomass, NDVI, and LAI along the Eurasian Arctic Transect

Howard E. Epstein, Donald A. Walker, Gerald V. Frost, Martha K. Raynolds, and Uma S. Bhatt

ICOP 2016 - Potsdam, Germany

Spatial Patterns of Tundra Vegetation

IGBP High-Latitude Transects

Ice

Polar desert/Alpine tundra Moist tundra Forest - tundra **Boreal forest** Extra - boreal

- Few data points

- Data don't go very "high"

McGuire et al. 2002 (Journal of Vegetation Science)

Presentation Topics

- 1) Field observations of vegetation biomass, NDVI, and LAI along the Yamal Peninsula, Siberia and beyond (the EAT)
- Satellite remote sensing of vegetation trends along the EAT
- Satellite remote sensing of vegetation trends throughout Eurasia

The Arctic Tundra Biome

Walker, D. A., 2005. The Circumpolar Arctic Vegetation Map. Journal of Vegetation Science.

Barrens

- B1. Cryptogam, herb barren
- B2. Cryptogam barren complex (bedrock)
- B3. Noncarbonate mountain complex
- B4. Carbonate mountain complex

Graminoid tundras

- G1. Rush/grass, forb, cryptogam tundra
- G2. Graminoid, prostrate dwarf-shrub, forb tundra
- G3. Nontussock-sedge, dwarf-shrub, moss tundra
- G4. Tussock-sedge, dwarf-shrub, moss tundra
 - Glaciers

Prostrate-shrub tundras

- P1. Prostrate dwarf-shrub, herb tundra
- P2. Prostrate/hemiprostrate dwarf-shrub tundra

Erect-shrub tundras

- S1. Erect dwarf-shrub tundra
 - S2. Low-shrub tundra

Wetlands

- W1. Sedge/grass, moss wetland
- W2. Sedge, moss, dwarf-shrub wetland
 - W3. Sedge, moss, low-shrub wetland

Water

Non-Arctic areas

Raynolds et al. (2012), Walker et al. (2012)

Eurasian Arctic Transect

(Photos D.A. Walker and H.E. Epstein)

Eurasian Arctic Transect Location Data

Location	Longitude, latitude	Bioclimate subzone	Summer Warmth Index (°C mo)	Mean annual temperature (°C)	Geological setting, slope, elevation (m), parent material, surface geomorphology of zonal site	Soil texture, pH	Dominant vegetation	
Nadym	65.19 [°] N, 72.53 [°] E	Forest- Tundra	40	-6.5	Fluvial terrace II, Karga-age, (about 20-40 kya), alluvial sands	Sand 3.25	Lichen woodland: <i>Pinus sylvestris-Ledum palustre-</i> <i>Cladonia stellaris</i> (Walker et al. 2008a)	
Laborovaya	67.71° N, 67.99° E	E	38	-7	Hill slope, 2° slope SW, 80 m, hillslope colluviun over glacial till (Ermakovsky-age, about 50-110 kya), no patterned ground.	Clay loam, 4.6	Sedge, dwarf-shrub, moss tundra: <i>Carex bigelowii- Betula nana-Aulacomnium palustre</i> (Walker et al. 2008b).	
Vaskiny Dachi	70.28° N, 68.89° E	D	22	-8.1	Stable hill crest in strongly eroded section of coastal plain with many landslides, flat, 45 m, marine terrace IV (Kazantsevskaya-age, about 130-117 kya), no patterned ground.	Silt loam, 4.5	Sedge, dwarf-shrub, moss tundra: <i>Carex bigelowii-Vaccinium vitis idaea-Hylocomium splendens</i> (Walker et al. 2008b).	
Kharasavey	71.18° N, 66.98° E	С	15.5	-9.7	Coastal plain, marine terrace, flat, 16 m, alluvial-marine sediments, Marine terrace II, Karginsky-age, (about 20-40 kya), no patterned ground.	Silt loam, 4.5	Graminoid, prostrate dwarf-shrub, moss tundra: Carex bigelowii-Calamagrostis holmii-Salix polaris-Dicranum elongatum-Cladonia spp. (Walker et al. 2009a)	
Ostrov Belyy	73.33° N, 70.08° E	в	11.5	-10.3	Coastal plain, gentle slope of marine terrace, 2° NE, 2 m, alluvial- marine sediments, marine terrace II (Upper Pleistocene to Holocene age), non-sorted circles (0.5-0.7 m diameter).	Loam, 4.6	Vonsorted circle complex: (Inter-circle areas) Graminoid, prostrate dwarf-shrub, moss tundra: <i>Cai</i> <i>bigelowii-Calamagrostis holmii-Salix polaris-</i> <i>Hylocomiuim splendens.</i> (Nonsorted circles) Prostra dwarf-shrub, crustose-lichen barren: <i>Dryas integrifo</i> <i>Arctagrostis latifolia-Racomitrium lanuginosum-</i> <i>Ochrolechia frigida</i> (Walker et al. 2009b).	
Krenkel	80.58° N, 57.90° E	A	1	-13.3	Hill backslope, 4° W, 30 m, hillslope colluvium derived from unconsolidated calcareous sandstone deposits (Mesozoic age), small nonsorted polygons (10- 15 cm diameter).	Sandy Ioam, 6.2	Cushion-forb, lichen, moss tundra: <i>Papaver</i> dahlianum spp. polare-Stellaria edwardsii-Cetrariella delisei-Ditrichum flexicaule-black soil crust (Walker et al. 2011).	

Field Data Collection

- six locations, with 2-3 sites at each location with varying soil textures
- 50 x 50 m sampling grid and five 50 m transects at each site
- NDVI (ASD PSII) at 1-m intervals along the transects
- LAI (Li-Cor LAI-2000) at 1-m intervals along the transects
- five aboveground biomass harvests
- five soil samples (top 10 cm)

Aboveground biomass by plant functional type (Walker et al. 2012)

Total live biomass excluding trees and cryptogamic crusts

SOUTH

- High Arctic (Subzones C and B) sites on the Yamal are warmer than comparable subzonal sites in North America

Temporal Dynamics of Temperature (SWI) and NDVI for the Eurasian Arctic Transect

- TI (temporally integrated) –NDVI is an indicator of cumulative growing season productivity
- The Eurasian Arctic Transect has experienced substantive warming further north and generally slight cooling on the Yamal Peninsula from 1982-2015
- The Eurasian Arctic Transect has exhibited slight "greening" in the southern part of the Yamal Peninsula and "browning" in the northern part of the Peninsula

		NA	AT		EAT			
Disclinet	SV	NI 🔹	TI-N	IDVI	SWI		TI-NDVI	
subzone	Subzone	Study location	Subzone	Study location	Subzone	Study location	Subzone	Study location
А	73% (3.7)	Isachsen: 174% (6.7)	-6.3% (0.0)	Isachsen: NA	175% (3.6)	Krenkel: NM (0.83)	8.6% (0.02)	Krenkel: NA
В	74% (5.2)	Mould Bay: 49% (5.0)	-17% (-0.22)	Mould Bay: - 47% (-0.25)	38% (3.2)	Belyy Ostrov: NM (13.0)	3.8% (0.09)	Belyy Ostrov: 5.3% (0.15)
С	20% (3.8)	Green Cabin 11.8% (3.1)	-5% (-0.14)	Green Cabin: 4.5% (0.14)	-1.9% (-0.50)	Kharasavey: 154% (9.4)	-7.8% (- 0.37)	Kharasavey: 8.6% (0.37)
D	11% (3.1)	Franklin Bluffs: 1.7% (0.65)	21% (0.91)	Franklin Bluffs: 17% (0.74)	-2.3% (-0.72)	Vaskiny Dachi: 1.6% (0.51)	-2.7% (-0.14)	Vaskiny Dachi: -8.6% (-0.45)
Е	3.5% (1.3)	Happy Valley: 1.7% (0.69)	18% (1.0)	Happy Valley 25% (1.4)	-3.7% (-1.5)	Laborovaya: -1.9% (-0.78)	6.1% (0.32)	Laborovaya: 6.7% (0.39)
Total	11% (2.4)		10% (0.33)		-4.4% (-1.3)		0% (0)	

- Again, substantive warming in Subzones A and B with slight cooling in Subzones C-E on the Yamal Peninsula from 1982-2015
- Field sites within each subzone do not always exhibit the same trends compared to the subzone as a whole (e.g. Kharasavey)

Temporal Dynamics of Temperature (SWI) and MaxNDVI (peak season) for Eurasia

All sites 0.6 EAT NAAT 0.4 All sites: y = 0.243 Inx + 0.618 $R^2 = 0.91, p < 0.001$ 0.2 EAT: $y = 0.241 \ln x + 0.635$ $R^2 = 0.96, p < 0.01$ NAAT: $y = 0.243 \ln x + 0.604$ $R^2 = 0.89, p < 0.001$ 0.0 0.2 0.4 0.0 0.6 0.8 1.0 Phytomass (kg m⁻²)

Integration of field and remote sensing data still presents a major challenge

-60° N

-60° N

- Inherent differences in resolutions and extents of the data
- Landscape heterogeneity vs. field sampling scheme (e.g. zonal vegetation)

Raynolds et al. (2012)

Conclusions

 A collection of field locations along a latitudinal gradient in northwestern Siberia, Russia (EAT) was used to evaluate the spatial patterns of vegetation and soils properties along a summer warmth index (SWI) gradient

- NDVI, LAI, total biomass, shrub biomass, and total non-vascular biomass all increased with increasing SWI; mosses had their greatest biomass at intermediate values of SWI

- C:N ratio (mineral soil), organic layer thickness, and active layer thickness all increased with increasing SWI

- With regard to temporal dynamics, the Higher Arctic of the EAT has warmed substantively since 1982, where the mainland Yamal Peninsula has experience a general slight cooling; the northern Yamal has showed "browning" trends, whereas the southern Yamal has "greened"

- The northernmost subzones in Eurasia have shown substantial warming with minimal vegetation response, whereas the southernmost areas have show the greatest vegetation increases with essentially no warming.

- Vegetation in Subzone B (along the EAT) is the most response with regard to inter-annual variability in SWI

This work was funded by the NASA Land-Cover Land-Use Change (LCLUC) program, Grant Nos. NNG6GE00A, NNX09AK56G, NNX14AD906, and NSF Grant Nos. ARC-0531180 (part of the Synthesis of Arctic System Science initiative - Greening of the Arctic) and ARC-0902152 (part of the Changing Seasonality of Arctic Systems initiative)

