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ABSTRACT

Minkowski densities and density functions are measures for quantifying arbitrary binary patterns.
They are employed here to describe permafrost patterns obtained from aerial photographs. We
demonstrate that images taken at two neighbouring sites shown distinctly different patterns and
quantify the difference. It is found that one of the sites exhibits an essentially single-scale structure
while the other one has a multiscale organization. Minkowski densities and density functions are thus
proposed as sensitive and objective measures to quantify the change of permafrost patterns in space or
in time. Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Permafrost forms like sorted circles, hummocks,
polygons, and stripes are spectacular manifestations
of the complex dynamics of periodically frozen soils.
Their structure depends on the parent material as well
as on the external forcing by the thermal and hydraulic
regime (Hallet, 1990) and by possible fluxes of solid
matter (Francou et al., 2001). While these forms are
interesting in their own right as examples of self-
organized natural systems (Kessler ez al., 2001), they
may be even more interesting as indicators of chan-
ging environmental conditions which would lead to
changing patterns. These can be observed rather
inexpensively and over large regions through aerial
photographs. A major hurdle in this approach is the
objective quantification of observed patterns. While
easily recognized and categorized by eye, they are
notoriously difficult to cast into numbers which is a
prerequisite for quantifying changes. A popular ap-
proach to this problem is to interpret the pattern as a
realization of some random space function and to
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estimate its statistical properties, in particular covar-
iance functions of various order and correlation
lengths (Journel and Huijbregts, 1978; van Kampen,
1981). A difficulty with this approach is that already
moderately complicated patterns require higher order
covariance functions which are hard to estimate for
natural patterns that in general are not stationary.
Alternatively, the pattern may be interpreted as a
fractal object whose dimension and generator are to
be determined (Mandelbrot, 1977; Bacry et al., 2001).
Difficulties here are that there is hardly ever a single
underlying generator and that the available data do not
cover sufficiently many scales. While both approaches
have been demonstrated for describing various pat-
terns they appear less attractive for quantifying pat-
terns in permafrost soils. In this paper, we follow a
different approach, interpret the patterns as arbitrary
geometric objects and use Minkowski numbers and
functions (Mecke, 2000) to characterize them.

THEORY
Minkowski Numbers

A quantitative geometric description aims to reduce
the complexity of an object to a limited number of
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relevant quantities. In our context, relevant means that
the chosen measures distinguish between character-
istic patterns. Such measures should satisfy some
basic requirements so that the results obtained for
different patterns and by different observers are com-
parable. Specifically, these requirements are:

Additivity: The results obtained for the unification of
two subregions X and Y should be the same as the
summation of the results obtained for the individual
subregions, properly accounting for their overlap
which has been counted twice. For the measure M
this may be formulated as M(XUY)=M(X)+
M(Y) — M(X NY). Additivity is especially important,
since we are typically not in the position to study a
given pattern as a whole but are analysing limited
regions.

Motion invariance: The results must not change if a
given object is moved or rotated, hence are indepen-
dent of the position of the observer.

Continuity: Small changes of a given object must
lead to small changes of the measure. Since imaging
techniques are typically afflicted with various types of
noise, the measure should be robust in this context.

In the following we assume that the object of
interest is the set X of black pixels of some binary
structure €2, hence X C €. Specifically, the object X
might represent stones, vegetation or bare soil and (2
is the image to be analysed. Given such a binary
image, integral geometry provides d + 1 basic mea-
sures, where d is the dimension of (2. These measures
are called ‘Minkowski numbers’ M, and satisfy the
requirements mentioned above. The first measure M
is simply the mass of the structural unit, which in two
dimensions is its surface area A. Hence

Mo(X) = A(X) (1)

The other Minkowski numbers are defined through
integrals over the boundary 90X of the object X. Notice
that 0X defines the shape of X unambiguously. In d-
dimensional space there are d basic integrals related to
the boundary and its d — 1 principle radii of curvature.
For d =2 the first integral measures the total length of
the boundary,

) = [ as= 1) )

and the second integral measures the total curvature of
the boundary,

My(X) = /d 1d — c(x) 3)
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Figure 1 Sketch for Euler number defined in (4) and its change
upon opening. The topmost pattern consists of one single object
with one redundant connection: cutting along the dashed line
removes one connection without generating a new object. Any
(topologically) different cut creates a new object, the corresponding
connection is thus not redundant. Hence, with (4), x =0. The first
step to opening this pattern consists of eroding it with a circular
element of radius r. This leads to the grey pattern in the middle. The
second step consists of dilating, adding a ‘skin’ of thickness r and
produces the pattern at the bottom. Opening with radius r removes
all smaller features, here the narrow ridge between the larger
patches. For the opened pattern, y = 1.

where ds is the boundary element and r is its radius of
curvature, positive for convex and negative for con-
cave shapes. Notice that the curvature integral equals
27 for each closed convex boundary (objects) and
—27 for each closed concave boundary (holes). Thus,
M, is closely related to the Euler number x which
counts the number Npje Of isolated objects minus the
number Ny of holes within the objects, which are
also referred to as loops (see top of Figure 1). In
particular

1
X(X) = Nobject - Nhole ==

s
M, is a dimensionless topological measure that quan-
tifies the connectivity of the pattern while M; and M,
are metric entities with units [L] and [LZ], respectively.

To compare results obtained from different images,
we remove the effect of image size through normal-
ization with respect to the total area A({2) of the
region considered. Thus, we introduce the Minkowski
densities

M (X) (4)

(X) = Mik% ) (5)
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as intensive quantities and will use them throughout
this paper.

Hadwiger’s Theorem

At a first glance, Minkowski numbers appear to be yet
another characterization of some properties of a geo-
metric object. What makes them particularly appeal-
ing though is a theorem due to Hadwiger (1957), cited
in Mecke (2000), which states that any functional
(©(X) that depends on the object’s form alone and that
is additive, motion invariant, and continuous may be
written as a linear combination of Minkowski num-
bers. Hence

d
P(X) = eaMi(X) (6)
k=0

where ¢; are real coefficients that depend on the
property (X) but are independent of the object X.
Minkowski numbers thus form a complete basis of the
space of all these functionals. This is the motivation
for using Minkowski densities and density functions
for quantifying complex patterns.

Calculation of Minkowski Numbers

Given the binary image of an object where each pixel
is either 1 for the object or O for the background, the
calculation of the Minkowski numbers is straightfor-
ward (Ohser and Miicklich, 2000). They can be
obtained from a local evaluation of the pixel config-
uration within a 2 x 2 neighbourhood at each location
within the image. There are n=2*=16 possible
configurations ¢, each of them with a specific con-
tribution to the different Minkowski numbers: (i) the
number of pixel belonging to the object is related to
M,, (ii) the number of transitions 1 < 0 leads to M,
and (iii) the number of vertices (pixels), edges and
faces, N,, N., and Ny, respectively, is related to
M, =2y by the classical Euler formula

X =N, =N, + Ny (7)

In Figure 2, all 16 configurations g together with their
specific contributions I;(¢) are shown. The
Minkowski densities may thus be calculated from
the frequencies

_ N g
/@ 2;5:0 N(q) )

of the different configurations within an image, where
N(g) is the number of 2 x 2 neighbourhoods with
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Figure 2 Complete set of the 16 possible pixel configurations in a
2 x 2 neighbourhood for a two-dimensional binary image. Pixels
that belong to the object X are represented by a black circle. For
each configuration, its contribution to M, (top right), M; (lower
left), and M, (lower right) is given. The mode of evaluation is
illustrated in the small figure at top left: For the contribution to M,
the upper left pixel is considered. For the contribution to M; the
transitions 1 «<- 0 are counted for the directions indicated by thick
lines, including the two dashed ones. For M,, the upper left vertex
(pixel), the solid thick edges (provided they connect two occupied
pixels), and the two grey shaded faces (provided they have three
occupied vertices) are considered and evaluated according to (7).

configuration ¢g. The Minkowski densities may thus be
calculated as

15
mi=w Y L(@)f(g); k=0,1,2  (9)
q=0

where
wo = m (10)
s e B
wy = Az;{:f@ (12)

and A is the side length of 1 pixel. We comment that
these weights are correct only for the special case of
square pixels and must be adapted for other shapes
(Ohser and Miicklich, 2000). Similarly, the pattern to
be analysed must be isotropic, without preferred
directions, at least microscopically. However, they
may be anisotropic macroscopically.

Minkowski Density Functions
The d+ 1 Minkowski densities characterize a parti-

cular binary representation of an object. A natural
extension is to consider some transformation of the
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Figure 3 Exemplary ‘pure’ patterns—single-scale (left), fractal (middle), multiscale (right)—for which the Minkowski functions are

shown in Figure 4.

original object or of its binary representation and to
calculate Minkowski densities as functions of this
transformation’s parameter vector p. This leads to
the Minkowski density functions my(p). In this
work, we will use three particularly useful transfor-
mations:

1. Given a grey-scale image, binary representations
are obtained for different values of threshold gg
and my, is calculated for them. The resulting func-
tions my(go) for instance facilitate choosing g
such that an optimally and objectively segmented
pattern results. The generalization to colour images
is straightforward.

2. To study the spatial variability of Minkowski
numbers within a given pattern, ny is calculated
locally over a circular region of radius r to obtain
my(x, r) for the intersection of the original pattern
with a circle of radius r located at x. This allows
the identification of similar features within a given
pattern.

3. To gain insight into the size distribution of features,
the original pattern is opened with a circular
element of radius r, i.e. all features of the pattern
that are smaller than r are removed (Serra, 1982).
This transformation is quite powerful, but may not
be well-known. It is thus illustrated in the follow-
ing with some artificial patterns before turning to
the real application.

We choose three qualitatively different examples,
(i) a single-scale pattern deduced from a cracked soil
surface, (ii) a scale-free fractal pattern, and (iii) a
multiscale pattern with a discrete hierarchy of scales
(Figure 3). For each of these examples, we consider
the black part as the pattern to be described. Opening
it by radius r consists of two steps: First, it is eroded
by radius r, i.e. the fraction that is within a distance r
from the interface to the white part is chipped away.
Some of the smaller pieces or narrow bridges between
larger patches are thereby removed completely as

Copyright © 2005 John Wiley & Sons, Ltd.

illustrated in Figure 1. In the second step, the remain-
ing black part is dilated, again with radius r, i.e. a
‘skin’ of thickness r is added. This two-step procedure
effectively removes all features smaller than » and
leaves the larger ones untouched. With this back-
ground, we look at the Minkowski density functions
my(r) for the three exemplary artificial patterns
(Figure 4). Since we are not concerned with the real
extent of the structures it is convenient to measure all
distances in units of a pixel, which gives the resolution
of the pattern. Notice that a ‘pixel’ usually refers to an
area element while we will use the name for the side
length of such a (quadratic) element.

First consider the single-scale pattern which essen-
tially consists of a network of black lines that are of
roughly equal thickness. Since there are many more
closed loops (redundant connections) than isolated
objects, the Euler number and thus m, is negative.
The first opening step leaves the pattern practically
unchanged because the surface is rather smooth.
Hence, also the Minkowski numbers are practically
constant. Increasing r further removes some of the
bridges. Since these are roughly linear elements, the
area density m and the boundary density m; decrease
by comparable factors. Removing bridges destroys
loops and creates isolated patches. Hence m, increases
and eventually becomes positive thereby indicating
that isolated patches outnumber the redundant con-
nections. We finally notice that the thickest structure
in the original pattern has a diameter of 8 pixel:
opening with r=4 pixel removes the entire pattern
since then mgy = 0.

The second example, the fractal pattern, is of a
completely different character. As m, reveals and as is
quickly confirmed by looking at Figure 3, tiny isolated
patches greatly outnumber loops. What is less ob-
vious, however, is that removing these small struc-
tures by an opening with r =1 pixel creates a pattern
where loops outnumber patches. This swings back
once more for r>2pixel. Concerning the size
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Figure 4 Minkowski density functions for the single-scale (solid),
fractal (dotted), and multiscale (dashed) pattern shown in Figure 3.
Notice the different scale of r for m, as compared to mg and m;.

distribution, we conclude from the continuous decline
of my and m; with increasing r that the distribution is
smooth and that the original pattern has no natural
length scale beyond the trivial ones that are given by
the size of a pixel and by the extent of the entire
region. Plotting log(my) and log(m;) versus log(r)
would show if the pattern is indeed a simple fractal
and would yield the respective dimensions.

Finally, the third example is revealed as a multi-
scale pattern by both my and m;, and m, shows that it
essentially consists of the superposition of patches.
The clearest evidence of the multiscale architecture

Copyright © 2005 John Wiley & Sons, Ltd.
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stems from m;(r) whose slope changes abruptly at
r=4pixel. The minute change of m for r <4 pixel
shows that the areal fraction of these small-scale
structures is also small. Based on the information so
far, one cannot decide if they result from surface
roughness or if they are small isolated patches. How-
ever, the rapid decrease of m; reveals that the latter is
the case. Removing surface roughness would not
affect the value of m, since no objects are created or
removed.

APPLICATION

Permafrost patterns are typically not as uniform as the
examples considered above and the base information
is in general not in binary form. Nevertheless, Min-
kowski numbers and functions are a powerful tool for
the quantitative analysis and interpretation of such
patterns. This is demonstrated in the following for the
surface patterns at two permafrost sites that are only a
short distance apart. In particular, we focus on the
pattern of vegetated areas.

Material

We use aerial images taken on Howe Island (N70°18’,
W147°59"), located off the Alaskan Arctic coast,
northeast of the Prudhoe Bay oil fields (Figure 5).
The surface is loess overlaid by stabilized alluvium.
Bare soil, partly encrusted with salt or cryptograms,
covers 80-90% of the area. Dominant patterned
ground forms are high- or flat-centred ice-wedge
polygons tens of metres in size and non-sorted circles,
also called mud boils or frost boils with diameters of
1-2m. The non-sorted circles are either continuous
patches of bare soil or are broken into smaller sized
polygons with diameters of 0.1-0.4m. Vegetation,
mainly discontinuous prostrate shrubs, inhabits the
borders of the bare ground circles and ice-wedge
polygonal troughs where water content is higher.
The organic layer is thin, typically less than 3 cm.

Aerial images were taken with a digital camera
(Olympus C2020) suspended from a kite (Boike and
Yoshikawa, 2003). The camera contains an interlaced
RGB CCD with 1600 x 1200 square photo receptors.
Images were obtained at the camera’s largest focal
length, 19.5mm corresponding to 105mm for a
35mm camera, and stored at highest resolution. The
ground resolution of the images as calculated from a
few reference marks are approximately 37 mm per
pixel at site H1 and 29 mm per pixel at site H2. Again,
we are not concerned with the real extent of the
structures and will measure all distances in units of
a pixel.

Permafrost and Periglac. Process., 16: 277-290 (2005)
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Figure 5 Original aerial images from sites Hl (top) and H2
(bottom). The discontinuous vegetation cover appears darker in
contrast to the lighter bare ground, distinguishing the patterned
ground features. At site H1, the polygonal ice-wedge network, non-
sorted circles and small non-sorted polygons can be distinguished.
Site H2 is largely dominated by non-sorted circles, each surrounded
by a vegetated border. Distance units at the axes are kpixel with a
resolution of some 37 m/kpixel at H1 and 29 m/kpixel at H2.

Prior to analysis, the aerial photographs were pro-
cessed through the following steps: (i) Transformation
of RGB colour image into an eight-bit grey scale
representation (256 levels of grey) by averaging the
three colour channels. (ii) Stretching contrast of the
image such that the darkest 1% of the pixels turn black
and the lightest 1% turn white with linear interpola-
tion in between. (iii) The last step, inverting the
image, was done only to facilitate the perception of
the pattern of interest.

We comment that, for precise quantification, a few
more preliminary steps would be required. These
include transforming the original image into an ortho-
normal representation and correcting possible nonuni-

Copyright © 2005 John Wiley & Sons, Ltd.

form illumination. Both steps require a number of
reference marks on the ground that are not available
for the images used here. Notice that while this
renders the numbers obtained from the subsequent
analysis less useful for a detailed quantitative analy-
sis, it does not compromise the qualitative comparison
of different patterns.

The most crucial step with respect to applications is
the segmentation of the image, i.e. the transformation
of the grey-scale image into a binary representation
since this determines what features will eventually be
analysed. In general this will be a rather complicated
step that requires input from different colour channels
of the image and possibly some ancillary information
like surface topography. Since our focus is on pattern
analysis, however, we will employ the most simple
threshold method. We thus choose an appropriate
threshold g for the grey value g and assign the value
0 (white) to pixels for which g < g, (vegetated sur-
face) and the value 1 (black) to all others (bare
surface). For site H1, results of preliminary image
processing and segmentation with some distinguished
values of g, are shown in Figure 6. In the following,
we will refer to the black part of the pattern, which
corresponds to the bare soil, as the ‘black phase’.
Consequently, the vegetated soil surface is repre-
sented by the ‘white phase’.

Dependence of Minkowski Densities on
Segmentation Threshold

We consider the black phase of binary representations
of sites H1 and H2 to study the dependence 7, on the
segmentation threshold gy (Figure 7). The notation 7
is chosen to distinguish the Minkowski densities of the
entire pattern from those of subregions which will be
introduced in subsequent sections.

As expected, mp, which equals the area fraction of
the black phase, increases monotonically with go. It
actually is the probability distribution function of the
grey values. Apparently, the area fraction increases
more rapidly for smaller values of gy at site H2 than at
HI1. This results from the large patches of bare soil
that also stand out in Figure 5.

The number i, corresponds to the length density of
the interface between the black and white phases.
For the type of regular structure considered here, i,
may be expected to be small for extreme values of gg
since the corresponding patterns consist mainly of
small black or white patches. Provided the character
of the interface, in particular its variation, does not
depend on gy there will be a monotonic relation
between the area of an object and its interface length.
As long as the patches remain isolated, we thus expect

Permafrost and Periglac. Process., 16: 277-290 (2005)
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Figure 6 Preliminary image processing consists of transformation from RGB to grey scale (upper left), contrast stretching, and inversion
(upper right). Segmentation with threshold g, then leads to a binary representation of the pattern (bottom row). The value of g is chosen
such that m, is maximal (go=49), zero (go=141), and minimal (go=211), respectively.

a monotonic increase of m; as gy departs from the
extreme value. This general behaviour is realized at
both sites. For intermediate values of g, the shape of
my(go) reflects the respective gains and losses of
interfacial area as new objects occur and coalesce,
respectively. The two sites show marked differences
in that the two overlapping peaks for site H2 indicate
the existence of two separate classes of objects with
different brightnesses whereas the single-peaked
shape for site H1 hints at a more uniform distribution
of brightnesses.

We finally consider m, which is proportional to the
Euler number of the black phase. We recall that i, is a
topological quantity, in contrase to 7 and m; which
are metric quantities. In two dimensions, it gives the
difference between the numbers of isolated objects
and redundant connections, divided by the total area.
As already noted in the previous paragraph, for
extreme values of gy we expect the pattern to consist
predominately of isolated patches (see Figure 6).
These will be black patches for small values, repre-
senting isolated objects, and white patches for large
values, corresponding to holes, hence to redundant
connections. Thus, m; is expected to be positive for
small values of gy and negative for large ones. With g
departing from its extremes, the number of objects
will initially increase, leading to a corresponding
increase of the magnitude of /m,. Eventually, with g,
departing further, more isolated black and white

Copyright © 2005 John Wiley & Sons, Ltd.

objects will merge than there are created and the
magnitude of m, will decrease. We thus expect to
find at least two extrema in imy(go), one positive
towards small values of gy and one negative towards
large values. For both sites, this general shape is
clearly discernible in the lower graph of Figure 7.
For intermediate values of gy, we may expect quite
some variability for the shape of my(gy) between
different sites, as is already the case for the two sites
considered here. Looking at H2, we find from m, that
the area fraction with grey values in the interval
(100,150) is about 0.15 and that also the length of
the interface as shown by m; changes significantly in
this interval. However, m; is approximately constant
in this interval which means that if the number of
objects changes at all, this change is balanced by the
number of redundant connections. This indicates that
the topology of the black phase does not change
significantly in this interval. The situation is quite
different at site H1, where we find a continuous
change of the metric and of the topological quantities.

As a final remark, we notice that the functions
my(go) are approximately orthogonal, i.e.

255
> lmi(i) = m) | Ime(i) = (mi)] = 0, j #k (13)
i=0
where (/;) := 256" 520 i;(i). This means that the
three functions m(go) contain approximately

Permafrost and Periglac. Process., 16: 277-290 (2005)



284 K. Roth, J. Boike and H.-J. Vogel
1.0 —
0.8 _
0.6 .
0.4 a

o(go) []

0.2 —

0

15 —

\\\\‘]I\[‘\\\

0 100
threshold gg

200

Figure 7  Global Minkowski density functions . (g,) for the
black phase of binary representations of H1 (solid) and H2 (dashed).

independent information on the pattern as a whole.
Notice that this is a different statement from
Hadwiger’s theorem which only refers to the binary
representation of the pattern for a particular value of
go. Clearly, these functions cannot reveal detailed
structures of the image but rather are lowest order
descriptions. Their use would be analogous to that of
statistical moments for characterizing probability den-
sity functions. It appears to be worthwhile to explore
to what extent different patterns occurring in nature
can be categorized simply by the shape of the corre-
sponding Minkowski density functions m(go). Ob-
viously, a quantitative exploration of this requires
carefully normalized images which in turn demands
a set of reference marks on the ground. However, if

Copyright © 2005 John Wiley & Sons, Ltd.

these are not available, as will often be the case,
qualitative comparison is possible even with the type
of rough normalization described in Material. We will
not follow this line here, however, and proceed to
analyse the spatial structure in more detail.

Spatial Variability of Minkowski Densities

Natural patterns often contain elements on different
scales as is also the case for the two permafrost sites
considered here. It is thus useful to calculate the
Minkowski densities not only for the entire field of
view but also for subregions. The first question arising
concerns the size of these subregions. As a pragmatic
approach, we employ the concept of the representative
elementary volume (REV), choose circular subre-
gions with radius r, calculate m at different locations
as a function of r, and choose r such that the circle
encompasses small-scale variations but is not yet
affected by large-scale variations. Figure 8 shows
my(r) for a few typical locations at Hl with
go = 141. For small values of r, less than 30 say, my
strongly depends on the immediate neighbourhood
and thus fluctuates strongly with . However, with
increasing values of r, my(r) often approaches a rather
constant value that is representative for the small-
scale patterns. In some instances, m; becomes stable
only for very large values of r. These typically
correspond to locations that are near the boundary
between some large-scale features. From Figure 8, we
choose =50 as a reasonable radius for an REV.

With an REV in hand, we explore the spatial
variability of the Minkowski densities by assigning
to each location x the value of my in the REV centred
at x. Figure 9 shows the resulting density functions for
the black phase of H1 with segmentation threshold

We first notice that the large-scale features of the
pattern are visible in all three Minkowski densities
even though the details are characteristically different.
Easiest to interpret is mg, which in two dimensions
equals the areal density of the phase considered. It
clearly identifies regions of extended vegetated
patches (low values of my), of extended bare patches
(high values of my), and of the rather wide transition
regions between. Obviously, we lack the spatial re-
solution of the original image and thus cannot say
anything about the structures of the transition regions
which could be larger isolated lumps as well as finely
interweaved phases. This information is to some
extent contained in the Minkowski densities m; and
m,, however.

In regions with extreme values of my either the
black or the white phase dominates strongly.

Permafrost and Periglac. Process., 16: 277-290 (2005)
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Figure 8 Typical examples for the dependence of Minkowski
densities my on radius r of circular subregions (black phase of H1
for go = 141). The numbers that identify the curves in the top graph
correspond to the locations given in Figure 9.

Correspondingly, the density of interfaces between
them is small. Examples are the regions around
x=(1.2,0.7) and x = (1.5, 0.45) where m, is smaller
than 0.1 and larger than 0.9, respectively. In both
regions, we find values of m; that are more than an
order of magnitude smaller than the largest values at
this site. Transition regions on the other hand, with
values of mg around 0.5, may contain high or low
densities of interfaces, depending on the arrangement
of the phases. Examples for regions with comparable
values of mgy but quite different values of m; are
around x = (0.7, 0.35) and x = (1.3, 0.5).

Further information about small-scale structures,
namely about their connectivity, is contained in m;

Copyright © 2005 John Wiley & Sons, Ltd.
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Figure 9 Spatial variability of Minkowski densities my, (top), m;
[10~" pixel '] (middle), and m, [107° pixel ] (bottom) for the
black phase of H1 with threshold g=141. The corresponding
pattern is shown in the upper left of Figure 10. Numbers are
calculated for circular areas with radius r=50pixel and plotted
with a resolution of 10 pixel. Axes are labelled in kpixel. Numbered
circles identify locations with radius r= 50 pixel used for Figure 8.

which in two dimensions is proportional to the differ-
ence between the number of isolated objects and the
number of redundant connections of the black phase.
Regions with comparable values of my and m; may
thus be discriminated with respect to m,. An example
is provided by the surroundings of x=(0.45, 0.65)

Permafrost and Periglac. Process., 16: 277-290 (2005)



286 K. Roth, J. Boike and H.-J. Vogel

and x = (1.1, 1.0). We further find that the black phase,
which corresponds to the bare soil regions, consists of
predominantly isolated objects near the boundaries of
the large-scale features while in their interior the
black phase is connected.

Of course, visual inspection also provides the
information just outlined. The advantage of using
Minkowski densities is that we can easily quantify
such subjective impression and that inspection can be
performed automatically, thereby facilitating the pre-
cise monitoring of large areas.

Comparing Sites

We compare the binary representations of H1 with
go =141 and of H2 with gop = 102, respectively,

which are shown in Figure 10. These values are
chosen such that m, ~ 0 for the global pattern at the
respective site (see Figure 7). The density functions
my(X), . . .,mo(X) are shown in the top rows of
Figures 11-13 with the same resolution as used for
Figure 9. As already mentioned, mg discrimi-
nates between solid patches and open transitional
regions. Obviously, the forms of the transitional
regions differ considerably between the two sites,
with an apparent multiscale organization at Hl and
dominating single scale shapes at H2. While this is
reflected in considerably larger interface densities at
H1 as compared to H2 (see also Figure 14 with »r=0)
the difference is most pronounced in the spatial
variation of m,. At H1, the connectivity varies greatly
in space. Regions with a highly connected black

Figure 10 Binary representations of H1 with go = 141 (left column) and of H2 with gy = 102 (right column) before (top row) and after
(middle row) opening with a circular element of radius 5 pixel. The bottom row shows the difference between the original and the opened
pattern, i.e. those parts of the patterns are smaller than a circle with r =5 pixel. Axes are again in kpixel.

Copyright © 2005 John Wiley & Sons, Ltd.

Permafrost and Periglac. Process., 16: 277-290 (2005)



Quantifying Permafrost Patterns 287

Figure 11 Minkowski density m,—the area fraction of black phase—for the original patterns shown in the top row of Figure 10 (top row)
and for the patterns opened with r =5 pixel shown in the middle row of Figure 10 (bottom row). The left column is for site H1, the right one
for H2. Grey-scale is dimensionless.

Figure 12 As Figure 11 but for Minkowski density m, the surface density. Notice the different grey scales. Their units are
10" pixel "

Copyright © 2005 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 16: 277-290 (2005)
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Figure 13 As Figure 11 but for Minkowski density m,, the Euler number density. Notice the different grey scales. Their units are

1072 pixel %

phase, m,>10"?pixel *, are adjacent to regions
where the black phase essentially consists of isolated
objects, m, < — 1072 pixel_z. At H2 in contrast, m, is
rather uniform over most of the field with values
between +10 pixel 2.

As pointed out above, a more detailed analysis is
possible by looking at opened patterns for which
elements that are smaller than a circle with some
radius r are removed. Opening has three effects on a
pattern: (i) interfaces are smoothed which reduces
their length, (ii) narrow bridges between larger
patches are removed which tends to increase the
number of isolated objects and at the same time to
reduce the number of redundant connections, and (iii)
small objects are removed entirely. Clearly, the impact
of opening depends strongly on the organization of a
pattern, as is illustrated by the bottom row of Figure
10 where those features are depicted that disappear
upon opening with r=>5pixel. Opening the pattern
removes 55% of the black phase at H1, mg decreases
from 0.60 to 0.28, but only 36% at H2 (Table 1).
Corresponding to the decrease in m( and the inter-
facial smoothing, we also find a strong decrease of the
interfacial length density m; which decreases to 23%
of its original value at H1 and 32% at H2. We remark
that in contrast to mg, m; need not decrease with
opening, although it usually will with the type of
patterns considered here. While 7y and m,; are typi-
cally found to be monotonically decreasing functions

Copyright © 2005 John Wiley & Sons, Ltd.

of the opening radius, m, will in general be of a rather
complicated form. The reason for this is that opening
removes small isolated objects, thereby reducing m;,
but also removes narrow bridges which creates new
objects and reduces connections, causing 1, to in-
crease.

More important than the different average changes
of my at the two sites, however is that the opening at
H1 removes an entire feature of the pattern, namely
the small polygonal bare patches along the boundary
between the largest structures (see bottom row of
Figure 10). In contrast, opening at H2 leads to rather
minor modifications, mostly to interface smoothing.
This difference is also manifest in the spatial structure
of the Minkowski densities (bottom rows of Figures
11-13). At HI, the original large regions of rather
compact black phase have almost disappeared with
only small patches remaining (Figure 11), the regions
with negligible interfacial length density are greatly
enlarged (Figure 12), and the connectivity patterns
change completely with some highly connected regi-
ons transformed into ones with predominantly isola-
ted objects, for instance near x = (0.8,1.0) (Figure 13).
In contrast, the changes at H2 are rather moderate with
the overall structure hardly affected over most of the
region. An exception to this are small regions, for
instance around x = (0.1,0.6) and x = (1.5,0.8), which
are structurally more similar to H1. This comparison
demonstrates the power of Minkowski densities to

Permafrost and Periglac. Process., 16: 277-290 (2005)
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Figure 14 Minkowski densities 777 as functions of the opening
radius r at sites H1 (solid) and H2 (dashed).

identify and quantify multiscale organizations of
patterns as they are encountered at HI but not at H2.

We comment that the analysis just presented could
be sharpened further by discriminating between differ-
ent sub-patterns and by then restricting the calculation
of my(x) to similar sub-patterns. Figure 10 shows for
instance that the top right corner at H2 is structurally
more similar to the pattern found predominantly at H1
than to the rest of the pattern at H2. Such a discrimina-

Table 1 Global values of Minkowski densities 7y
before and after opening by a circle with radius of
5 pixel.

kK HI H2 HIP  p2oPen Units

0 060 052 028 0.33 1

1 154 107 035 0.34 10" pixel !
2 —0.038 0.032 0.144 0.096 1073 pixel >

Copyright © 2005 John Wiley & Sons, Ltd.
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tion could be readily automated since the patterns can
be distinguished based on their Minkowski densities.

Minkowski Density Functions

We consider the global Minkowski densities ;. as
functions of the opening radius r, again for binary
representations of H1 with gy = 141 and of H2 with
go = 102 (Figure 14). The multiscale organization of
the pattern at H1 postulated in the previous section
becomes further manifest in that both my and m,
decrease rather rapidly for r < 6 pixel and tail off for
larger values of r. In comparison, the decrease at H2 is
more gradual. An even stronger discrimination be-
tween the two sites is apparent in m,. The initial
opening step makes 7, more negative at both sites,
although the effect is much stronger at H2 than at H1.
Inspection of the images (not shown) reveals that the
strong decrease of m; results from a large number of
small objects that get removed even though some
redundant connections also disappear. At H2, the
following opening steps let m, jump to slightly
positive values where it remains practically constant
for 3 <r< 12 and decreases slowly to 0 afterwards.
This indicates that for a rather extended range of sizes,
the topology of the pattern remains constant. At H1, in
contrast, opening beyond the first step leads to a very
strong increase of m, which is caused by the creation
of isolated objects by eroding away narrow necks with
widths between 2 and 4 pixel. These newly formed
isolated objects are rather small, however, and dis-
appear rapidly upon further opening. With r > 5 pixel,
m, continues to decrease, but at a more moderate rate.

As an aside, we comment that log-log plots of my
and m at the two sites show that the interfacial length
density at H2 may follow a power law distribution, but
that the other quantities are of a more complicated
form. The underlying patterns thus cannot be de-
scribed as simple fractals.

SUMMARY AND CONCLUSIONS

We have introduced Minkowski densities and density
functions as tools for quantifying patterns and demon-
strated them by analysing three artificial patterns. We
then applied them to aerial images obtained from patt-
ered ground at two neighbouring permafrost sites.
Although these tools cannot rival our visual perception
in discriminating and possibly also in categorizing nat-
ural patterns, they do have two significant advantages:

1. They can be performed automatically and thus
facilitate the analysis of very large data sets as

Permafrost and Periglac. Process., 16: 277-290 (2005)
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for instance produced by high-resolution satellite
imagery. Automated analysis is typically most
efficient with some initial manual adjustment of
parameter ranges, most importantly for thresholds
and averaging areas in case of spatially varying
patterns. However, even those steps can be auto-
mated with more sophisticated algorithms that
implement and combine the analyses that led to
Figures 7 and 8. Exemplary visual inspection of the
results will remain mandatory as with all auto-
mated procedures.

2. They are quantitative, hence allow us to monitor
transitions in space and changes in time in an
objective manner that does not depend on the
interpreter’s experience and form. This also facil-
itates comparisons of patterns from different sites.

We should comment in closing that the methods
introduced here reduce an arbitrary pattern to a few
numbers or at most to a few functions. Clearly, a huge
fraction of the information contained in the pattern is
thereby lost and it will, in particular, not be possible to
recreate the pattern from the reduced information.
Such data reductions are well known from statistical
analyses where rich data sets are reduced to their first
few moments, e.g. mean and variance, and the corre-
sponding functions, e.g. the autocovariance. The
power of such reductions is their focusing on just a
few aspects and in eliminating all the others. They are
only useful to the extent that the focused aspects are of
interest. However, since areal fractions, interface
densities, connectivities, and distances to interfaces
are relevant for many functional aspects of a perma-
frost environment, Minkowski numbers and functions
are proposed as a useful tool for quantifying the
observed patterns.

Implementations of the tools used in this work are
contained in the public domain package QuantIm
which may be obtained from www.iup.uni-heidelberg.
de/institut/forschung/groups/ts/tools.
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