Changing seasonality of tundra vegetation and associated climatic variables

U. S. Bhatt¹, D. A. Walker², P. Bieniek¹, M. Raymonds¹, H. Epstein³, J. Comiso³, J. Pinzon³, and C. J. Tucker², M. Steele⁴, W. Ermold⁵, and J. Zhang⁶
¹University of Alaska, Fairbanks, USA; ²University of Virginia, Charlottesville, USA; ³NASA Goddard, Greenbelt, USA; ⁴APL, U. Washington, Seattle, USA
AGU Fall Meeting, San Francisco California, B41E Changing Ecosystems of the Arctic and Antarctic Posters II, Thursday AM December 18, 2014

Main Findings

• Sea ice continues to decline, while summer warmth and NDVI trends over the Arctic have flattened or even declined.
• Summer Warmth declines are most prominent during the middle of the summer throughout the Arctic.
• Peak summer MaxNDVI has continued to increase while MaxNDVI has declined in spring and fall, contributing to TI-NDVI declines.

Motivation and Methods

Goals:
1. Document seasonality of tundra NDVI trends
2. Understand related tundra-climate relationships

Data:
1. Use 25 km resolution SSMI passive microwave Bootstrap Sea Ice Concentration (SIC);
2. AVHRR Surface Temperature (Tsurf);
3. IMAGSAT Normalized Difference Vegetation Index (NDVI3g) for the Arctic over the 1981-2012 period (Pinzon et al. 2014)

NDVI = (Rn-Rd)/(Rn+Rd)
NIR: spectral reflectance in near-infrared band (0.725-1.1 μm) & R: red chlorophyll absorbing portion of spectrum (0.58-0.68 μm)

Methods: Standard climate trend and correlation analysis techniques applied to regional (Modified Treshnikov basins) time series of Maximum NDVI, Time Integrated NDVI, Summer Warmth Index, and sea ice concentration constructed using data within 50-km of Arctic coastlines (ocean & land).

Overall, summer sea ice declining, land surface warming and vegetation greenness increasing.

Seasonality Changes 1999-2013: Midsummer cooling and Spring/Fall NDVI declines

• Since ~2000, SWI shows declines over Eurasia & N. America
• Since ~2000, TI-NDVI shows declines over Eurasia

Recent trends: SWI shows cooling around Arctic, MaxNDVI continued increases while TI-NDVI shows declines

Summary & Thoughts

• Since 1999, SWI has declined primarily due to midsummer cooling.
• SWI increases continue in early and late summer.
• Bi-weekly MaxNDVI has declined in fall and spring but increased during mid-summer since 1999.
• What could be causing these trend patterns?
• NDVI: Increased snow cover in spring? (Bieniek et al. 2014)
• SWI: Increased cloud cover in summer? Global Climate Hiatus?

This poster is a summary of a manuscript [Bhatt et al. 2014].

References

Bhatt, U.S., DA Walker, MK Raymonds, JC Comiso, SJ Epstein, EA Guo, LR Paras, CT Tucker, CT Trevisani, and PJ Bailey, 2010: Comparing recent warming trends over the northern Canadian Arctic Land Ice Sheet:

Acknowledgements

This work was supported by funding from the National Science Foundation (NSF Arctic Science, Engineering and Education for Sustainability (Arc-SEES) grant no. 1233504 with partial support from Bureau of Ocean Energy Management (BOEM) and Department of Interior (DOI), NSF ARC-090211S, NASA Land Cover Land Use Change (LCLUC) Program, Grant No. NNX14AD96G, NASA Pre ABoVE: Grant #NNX13AM20G).

Figure 1. Updated Treshnikov divisions. [Bhatt et al. 2013]
Figure 2. Updated trends of summer open-water (OW) (top left), Summer Warmth Index (SWI: sum of the degree months above 0°C) (top right), Maximum NDVI (bottom left) and TI-NDVI (bottom right). OW is shown as a total trend over the 32 year period (1982-2013) while SWI and NDVI are shown as percent change since 1982.
Figure 3. Time series of SWI (left panel) and TI-NDVI (right panel) for Arctic, North America and Eurasia tundra regions.
Figure 4. Percent change trends for SWI (left column), MaxNDVI (middle column), and TI-NDVI (right column) for the period 1982-1998 (top row) and 1999-2013 (bottom row).
Figure 5. Arctic tundra land surface temperature weekly climatology (red bars) and trends (grey) for full period (top), 1982-98 (middle) and 1999-2013 (bottom).
Figure 6. Arctic tundra land weekly MaxNDVI climatology (green bars) and trends (grey) for full period (top), 1982-98 (middle) and 1999-2013 (bottom).