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I INTRODUCTION Most changes in landscapes along roads are caused by a com-
bination of (a) flooding due to the elevated road beds that inter-
rupt natural drainage flow patterns; (b) heavy road dust, which
smothers the vegetation and changes the albedo of the tundra
surface; and (c) snow banks that form along the edges of the
elevated roads. All of these factors tend to raise soil temper-
atures, which in turn increase the active layer thickness near
roads, leading to roadside thermokarst (Fig. 2).

II METHODS

This study, initiated in 2014, builds on baseline data collected
in the same area by Walker et al. 1980. A time series of aerial
photographs of Colleen Site A was used to show the transition
of the landscape between 1968 and 2013 (Fig. 4). Aerial pho-
tographs of 1972 and 2013 were used to produce a vegetation
change map (Fig. 7, 8) (aerial photograph of 1968 was not
available to the time of the analysis).

Following the discovery of oil at Prudhoe Bay in 1968, a se-
ries of environmental changes occurred that were the result of
natural long-term processes and changes caused directly and
indirectly by infrastructure. Here we examine changes associ-
ated with a road at Colleen Site A, Deadhorse, Alaska (Fig. 1).
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,,,’l.. T ,..‘ _ p. 7 = Figure 2. Roadside disturbances related to dust and thermokarst.

Figure 1. The Lake Colleen region. False-color-infrared World View image (July 9, 2010). Note: red tones show areas
of highly productive vegetation.
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Figure 4. Colleen Site A study area (as in Figure 1) time series 1968-2013, showing progression of change. Notes: The Spine Road was constructed in 1969 so does not appear on the 1968 image. Most of the thermokarst pits that are present in 1972 (shortly after construction of 1970 1980 1990 2000 2010 monthly mean temperatures > 0°C. ‘:\ N {T-TFr-Jamans vgg,; :;:tior; ty:esg écfa;ﬁ: aoeri; / ep hn;?(;g
the road) are also visible on the 1968 image. Greatly expanded thermokarst is seen beginning in 1989. 1972 from 1972 and 2013,
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IV TRANSECT ANALYSIS

Q

Flgure 10. Examples for drilling profiles for transect T1and T2.  pa rticu |a|‘|y in winter. (Flg 1 3)
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Figure 9. (a) Overview of the transects T1 and T2. Note: red line mark the location of the transects NE and SW from the Spine Road. Position of center and trough permanent vegetation plots are marked as squares, and boreholes as white dots. (b) relative profiles of the transects T1 and T2. Note the 10x vertical exaggeration Figure 13. (a) Comparison of the average daily surface temperature at polygon centers (C) and troughs (T) at Colleen Site A for the time August 2014 to August 2015. (b)
(c) Microrelief and vegetation along the transects. (d) Graph showing the thaw depths, dust depths, and LAl measurements along the transects. (e) Comparison of the topo profile extracted from the LiDAR dataset (highest hit and bare earth model) and field survey. Comparison of the average daily soil temperature at -40 cm at polygon centers (C) and troughs (T) at Colleen Site A for the time August 2014 to August 2015.
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. . Figure 14. Differences in (a) trough-polygon center contrast, (b) thaw -
curred, increasing the extent of thermokarst on the both 00" /' egetation height, and (d) Lear Area Index (LAI) between the fll_es (SD was 1?16 cm compared to our survey
sides of the road. transects T1 and T2. with a TotalStation).

VI CONCLUSIONS
1 2 3 4 5 6

Information from the Colleen Site A There have been substantial changes Vegetation composition studies on Ice-wedge degradation has halted on There is a need to examine the con- Many of the recorded impacts are re-
studies, combined with the rich record to the vegetation, soils, microtopogra- these transects documented major re- some of the polygons on the south side sequences of these changes to other cent and rapid. Continued monitoring
of historical aerial photographs provide phy, permafrost and ice wedges due to ductions in lichen cover over 24 years, of the road. Enhanced productivity due components of the ecosystem, includ- will help industry and regulators apply
an excellent basis for examining the both climate change and infrastructure reduction in mosses, increase in shrub to wetter, more nutrient-rich conditions ing fish, birds and insects. these findings to management and de-
changes to this region. effects. cover adjacent to the road & overall de- has produced insulating vegetation and velopment issues.

crease in diversity. litter.



